Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2018-12-03
Chakrabarti, Somnath, Leslie-Hurd, Rebekah, Vij, Mona, McKeen, Frank, Rozas, Carlos, Caspi, Dror, Alexandrovich, Ilya, Anati, Ittai.  2017.  Intel® Software Guard Extensions (Intel® SGX) Architecture for Oversubscription of Secure Memory in a Virtualized Environment. Proceedings of the Hardware and Architectural Support for Security and Privacy. :7:1–7:8.

As workloads and data move to the cloud, it is essential that software writers are able to protect their applications from untrusted hardware, systems software, and co-tenants. Intel® Software Guard Extensions (SGX) enables a new mode of execution that is protected from attacks in such an environment with strong confidentiality, integrity, and replay protection guarantees. Though SGX supports memory oversubscription via paging, virtualizing the protected memory presents a significant challenge to Virtual Machine Monitor (VMM) writers and comes with a high performance overhead. This paper introduces SGX Oversubscription Extensions that add additional instructions and virtualization support to the SGX architecture so that cloud service providers can oversubscribe secure memory in a less complex and more performant manner.

2018-08-23
Pandit, V., Majgaonkar, P., Meher, P., Sapaliga, S., Bojewar, S..  2017.  Intelligent security lock. 2017 International Conference on Trends in Electronics and Informatics (ICEI). :713–716.

In this paper, we present the design of Intelligent Security Lock prototype which acts as a smart electronic/digital door locking system. The design of lock device and software system including app is discussed. The paper presents idea to control the lock using mobile app via Bluetooth. The lock satisfies comprehensive security requirements using state of the art technologies. It provides strong authentication using face recognition on app. It stores records of all lock/unlock operations with date and time. It also provides intrusion detection notification and real time camera surveillance on app. Hence, the lock is a unique combination of various aforementioned security features providing absolute solution to problem of security.

2018-06-07
Zimmermann, Olaf, Stocker, Mirko, Lübke, Daniel, Zdun, Uwe.  2017.  Interface Representation Patterns: Crafting and Consuming Message-Based Remote APIs. Proceedings of the 22Nd European Conference on Pattern Languages of Programs. :27:1–27:36.

Remote Application Programming Interfaces (APIs) are technology enablers for major distributed system trends such as mobile and cloud computing and the Internet of Things. In such settings, message-based APIs dominate over procedural and object-oriented ones. It is hard to design such APIs so that they are easy and efficient to use for client developers. Maintaining their runtime qualities while preserving backward compatibility is equally challenging for API providers. For instance, finding a well suited granularity for services and their operations is a particularly important design concern in APIs that realize service-oriented software architectures. Due to the fallacies of distributed computing, the forces for message-based APIs and service interfaces differ from those for local APIs – for instance, network latency and security concerns deserve special attention. Existing pattern languages have dealt with local APIs in object-oriented programming, with remote objects, with queue-based messaging and with service-oriented computing platforms. However, patterns or equivalent guidance for the structural design of request and response messages in message-based remote APIs is still missing. In this paper, we outline such a pattern language and introduce five basic interface representation patterns to promote platform-independent design advice for common remote API technologies such as RESTful HTTP and Web services (WSDL/SOAP). Known uses and examples of the patterns are drawn from public Web APIs, as well as application development and software integration projects the authors have been involved in.

2018-05-02
Garip, M. T., Kim, P. H., Reiher, P., Gerla, M..  2017.  INTERLOC: An interference-aware RSSI-based localization and sybil attack detection mechanism for vehicular ad hoc networks. 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Vehicular ad hoc networks (VANETs) are designed to provide traffic safety by exploiting the inter-vehicular communications. Vehicles build awareness of traffic in their surroundings using information broadcast by other vehicles, such as speed, location and heading, to proactively avoid collisions. The effectiveness of these VANET traffic safety applications is particularly dependent on the accuracy of the location information advertised by each vehicle. Therefore, traffic safety can be compromised when Sybil attackers maliciously advertise false locations or other inaccurate GPS readings are sent. The most effective way to detect a Sybil attack or correct the noise in the GPS readings is localizing vehicles based on the physical features of their transmission signals. The current localization techniques either are designed for networks where the nodes are immobile or suffer from inaccuracy in high-interference environments. In this paper, we present a RSSI-based localization technique that uses mobile nodes for localizing another mobile node and adjusts itself based on the heterogeneous interference levels in the environment. We show via simulation that our localization mechanism is more accurate than the other mechanisms and more resistant to environments with high interference and mobility.

2018-11-28
Kongsg$\backslash$a ard, Kyrre W., Nordbotten, Nils A., Mancini, Federico, Engelstad, Paal E..  2017.  An Internal/Insider Threat Score for Data Loss Prevention and Detection. Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics. :11–16.

During the recent years there has been an increased focus on preventing and detecting insider attacks and data thefts. A promising approach has been the construction of data loss prevention systems (DLP) that scan outgoing traffic for sensitive data. However, these automated systems are plagued with a high false positive rate. In this paper we introduce the concept of a meta-score that uses the aggregated output from DLP systems to detect and flag behavior indicative of data leakage. The proposed internal/insider threat score is built on the idea of detecting discrepancies between the userassigned sensitivity level and the sensitivity level inferred by the DLP system, and captures the likelihood that a given entity is leaking data. The practical usefulness of the proposed score is demonstrated on the task of identifying likely internal threats.

2018-03-19
Mehta, N. P., Sahai, A. K..  2017.  Internet of Things: Raging Devices and Standardization in Low-Powered Protocols. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–5.

This paper addresses the need for standard communication protocols for IoT devices with limited power and computational capabilities. The world is rapidly changing with the proliferation and deployment of IoT devices. This will bring in new communication challenges as these devices are connected to Internet and need to communicate with each other in real time. The paper provides an overview of IoT system architecture and the forthcoming challenges it will bring. There is an urging need to establish standards for communication in the IoT world. With the recent development of new protocols like CoAP, 6LowPAN, IEEE 802.15.4 and Thread in different layers of OSI model, additional challenges also present themselves. Performance and data management is becoming more critical than ever before due to the complexity of connecting raging number of IoT devices. The performance of the systems dealing with IoT devices will require appropriate capacity planning the associated development of data centers. Finally, the paper also presents some reasonable approaches to address the above issues in the IoT world.

2018-06-11
Andročec, D., Tomaš, B., Kišasondi, T..  2017.  Interoperability and lightweight security for simple IoT devices. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1285–1291.

The Semantic Web can be used to enable the interoperability of IoT devices and to annotate their functional and nonfunctional properties, including security and privacy. In this paper, we will show how to use the ontology and JSON-LD to annotate connectivity, security and privacy properties of IoT devices. Out of that, we will present our prototype for a lightweight, secure application level protocol wrapper that ensures communication consistency, secrecy and integrity for low cost IoT devices like the ESP8266 and Photon particle.

2018-05-01
Lehner, F., Mazurczyk, W., Keller, J., Wendzel, S..  2017.  Inter-Protocol Steganography for Real-Time Services and Its Detection Using Traffic Coloring Approach. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :78–85.

Due to improvements in defensive systems, network threats are becoming increasingly sophisticated and complex as cybercriminals are using various methods to cloak their actions. This, among others, includes the application of network steganography e.g. to hide the communication between an infected host and a malicious control server by embedding commands into innocent-looking traffic. Currently, a new subtype of such methods called inter-protocol steganography emerged. It utilizes relationships between two or more overt protocols to hide data. In this paper, we present new inter-protocol hiding techniques which are suitable for real-time services. Afterwards, we introduce and present preliminary results of a novel steganography detection approach which relies on network traffic coloring.

2018-04-11
Hossain, F. S., Yoneda, T., Shintani, M., Inoue, M., Orailoglo, A..  2017.  Intra-Die-Variation-Aware Side Channel Analysis for Hardware Trojan Detection. 2017 IEEE 26th Asian Test Symposium (ATS). :52–57.

High detection sensitivity in the presence of process variation is a key challenge for hardware Trojan detection through side channel analysis. In this work, we present an efficient Trojan detection approach in the presence of elevated process variations. The detection sensitivity is sharpened by 1) comparing power levels from neighboring regions within the same chip so that the two measured values exhibit a common trend in terms of process variation, and 2) generating test patterns that toggle each cell multiple times to increase Trojan activation probability. Detection sensitivity is analyzed and its effectiveness demonstrated by means of RPD (relative power difference). We evaluate our approach on ISCAS'89 and ITC'99 benchmarks and the AES-128 circuit for both combinational and sequential type Trojans. High detection sensitivity is demonstrated by analysis on RPD under a variety of process variation levels and experiments for Trojan inserted circuits.

2018-01-10
Frieslaar, Ibraheem, Irwin, Barry.  2017.  Investigating the Effects Various Compilers Have on the Electromagnetic Signature of a Cryptographic Executable. Proceedings of the South African Institute of Computer Scientists and Information Technologists. :15:1–15:10.

This research investigates changes in the electromagnetic (EM) signatures of a cryptographic binary executable based on compile-time parameters to the GNU and clang compilers. The source code was compiled and executed on a Raspberry Pi 2, which utilizes the ARMv7 CPU. Various optimization flags are enabled at compile-time and the output of the binary executable's EM signatures are captured at run-time. It is demonstrated that GNU and clang compilers produced different EM signature on program execution. The results indicated while utilizing the O3 optimization flag, the EM signature of the program changes. Additionally, the g++ compiler demonstrated fewer instructions were required to run the executable; this related to fewer EM emissions leaked. The EM data from the various compilers under different optimization levels was used as input data for a correlation power analysis attack. The results indicated that partial AES-128 encryption keys was possible. In addition, the fewest subkeys recovered was when the clang compiler was used with level O2 optimization. Finally, the research was able to recover 15 of 16 AES-128 cryptographic algorithm's subkeys, from the the Pi.

2018-03-19
Quach, Alan, Wang, Zhongjie, Qian, Zhiyun.  2017.  Investigation of the 2016 Linux TCP Stack Vulnerability at Scale. Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems. :8–8.

To combat blind in-window attacks against TCP, changes proposed in RFC 5961 have been implemented by Linux since late 2012. While successfully eliminating the old vulnerabilities, the new TCP implementation was reported in August 2016 to have introduced a subtle yet serious security flaw. Assigned CVE-2016-5696, the flaw exploits the challenge ACK rate limiting feature that could allow an off-path attacker to infer the presence/absence of a TCP connection between two arbitrary hosts, terminate such a connection, and even inject malicious payload. In this work, we perform a comprehensive measurement of the impact of the new vulnerability. This includes (1) tracking the vulnerable Internet servers, (2) monitoring the patch behavior over time, (3) picturing the overall security status of TCP stacks at scale. Towards this goal, we design a scalable measurement methodology to scan the Alexa top 1 million websites for almost 6 months. We also present how notifications impact the patching behavior, and compare the result with the Heartbleed and the Debian PRNG vulnerability. The measurement represents a valuable data point in understanding how Internet servers react to serious security flaws in the operating system kernel.

2018-05-09
Chang, Kai-Chi, Tso, Raylin, Tsai, Min-Chun.  2017.  IoT Sandbox: To Analysis IoT Malware Zollard. Proceedings of the Second International Conference on Internet of Things and Cloud Computing. :4:1–4:8.

As we know, we are already facing IoT threat and under IoT attacks. However, there are only a few discussions on, how to analyze this kind of cyber threat and malwares. In this paper, we propose IoT sandbox which can support different type of CPU architecture. It can be used to analyze IoT malwares, collect network packets, identify spread method and record malwares behaviors. To make sure our IoT sandbox can be functional, we implement it and use the Zollard botnet for experiment. According to our experimental data, we found that at least 71,148 IP have been compromised. Some of them are IoT devices (DVR, Web Camera, Router WiFi Disk, Set-top box) and others are ICS devices (Heat pump and ICS data acquisition server). Based on our IoT sandbox technology, we can discover an IoT malware in an early stage. This could help IT manager or security experts to analysis and determine IDS rules. We hope this research can prevent IoT threat and enhance IoT Security in the near future.

2018-06-11
Zayene, M., Habachi, O., Meghdadi, V., Ezzeddine, T., Cances, J. P..  2017.  Joint delay and energy minimization for Wireless Sensor Networks using instantly decodable network coding. 2017 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC). :21–25.

Most of Wireless Sensor Networks (WSNs) are usually deployed in hostile environments where the communications conditions are not stable and not reliable. Hence, there is a need to design an effective distributed schemes to enable the sensors cooperating in order to recover the sensed data. In this paper, we establish a novel cooperative data exchange (CDE) scheme using instantly decodable network coding (IDNC) across the sensor nodes. We model the problem using the cooperative game theory in partition form. We develop also a distributed merge-and-split algorithm in order to form dynamically coalitions that maximize their utilities in terms of both energy consumption and IDNC delay experienced by all sensors. Indeed, the proposed algorithm enables these sensors to self-organize into stable clustered network structure where all sensors do not have incentives to change the cluster he is part of. Simulation results show that our cooperative scheme allows nodes not only to reduce the energy consumption, but also the IDNC completion time.

2018-03-26
Mesodiakaki, Agapi, Zola, Enrica, Kassler, Andreas.  2017.  Joint User Association and Backhaul Routing for Green 5G Mesh Millimeter Wave Backhaul Networks. Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems. :179–186.

With the advance of fifth generation (5G) networks, network density needs to grow significantly in order to meet the required capacity demands. A massive deployment of small cells may lead to a high cost for providing fiber connectivity to each node. Consequently, many small cells are expected to be connected through wireless links to the umbrella eNodeB, leading to a mesh backhaul topology. This backhaul solution will most probably be composed of high capacity point-to-point links, typically operating in the millimeter wave (mmWave) frequency band due to its massive bandwidth availability. In this paper, we propose a mathematical model that jointly solves the user association and backhaul routing problem in the aforementioned context, aiming at the energy efficiency maximization of the network. Our study considers the energy consumption of both the access and backhaul links, while taking into account the capacity constraints of all the nodes as well as the fulfillment of the service-level agreements (SLAs). Due to the high complexity of the optimal solution, we also propose an energy efficient heuristic algorithm (Joint), which solves the discussed joint problem, while inducing low complexity in the system. We numerically evaluate the algorithm performance by comparing it not only with the optimal solution but also with reference approaches under different traffic load scenarios and backhaul parameters. Our results demonstrate that Joint outperforms the state-of-the-art, while being able to find good solutions, close to optimal, in short time.

2018-02-06
Chen, Yu, Zaki, Mohammed J..  2017.  KATE: K-Competitive Autoencoder for Text. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :85–94.

Autoencoders have been successful in learning meaningful representations from image datasets. However, their performance on text datasets has not been widely studied. Traditional autoencoders tend to learn possibly trivial representations of text documents due to their confoundin properties such as high-dimensionality, sparsity and power-law word distributions. In this paper, we propose a novel k-competitive autoencoder, called KATE, for text documents. Due to the competition between the neurons in the hidden layer, each neuron becomes specialized in recognizing specific data patterns, and overall the model can learn meaningful representations of textual data. A comprehensive set of experiments show that KATE can learn better representations than traditional autoencoders including denoising, contractive, variational, and k-sparse autoencoders. Our model also outperforms deep generative models, probabilistic topic models, and even word representation models (e.g., Word2Vec) in terms of several downstream tasks such as document classification, regression, and retrieval.

Brannsten, M. R., Bloebaum, T. H., Johnsen, F. T., Reitan, B. K..  2017.  Kings Eye: Platform Independent Situational Awareness. 2017 International Conference on Military Communications and Information Systems (ICMCIS). :1–5.

Kings Eye is a platform independent situational awareness prototype for smart devices. Platform independence is important as there are more and more soldiers bringing their own devices, with different operating systems, into the field. The concept of Bring Your Own Device (BYOD) is a low-cost approach to equipping soldiers with situational awareness tools and by this it is important to facilitate and evaluate such solutions.

2018-05-02
Gu, P., Khatoun, R., Begriche, Y., Serhrouchni, A..  2017.  k-Nearest Neighbours classification based Sybil attack detection in Vehicular networks. 2017 Third International Conference on Mobile and Secure Services (MobiSecServ). :1–6.

In Vehicular networks, privacy, especially the vehicles' location privacy is highly concerned. Several pseudonymous based privacy protection mechanisms have been established and standardized in the past few years by IEEE and ETSI. However, vehicular networks are still vulnerable to Sybil attack. In this paper, a Sybil attack detection method based on k-Nearest Neighbours (kNN) classification algorithm is proposed. In this method, vehicles are classified based on the similarity in their driving patterns. Furthermore, the kNN methods' high runtime complexity issue is also optimized. The simulation results show that our detection method can reach a high detection rate while keeping error rate low.

2018-04-02
Jia, J., Chen, L..  2017.  (L, m, d) \#x2014; Anonymity : A Resisting Similarity Attack Model for Multiple Sensitive Attributes. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :756–760.

Preserving privacy is extremely important in data publishing. The existing privacy-preserving models are mostly oriented to single sensitive attribute, can not be applied to multiple sensitive attributes situation. Moreover, they do not consider the semantic similarity between sensitive attribute values, and may be vulnerable to similarity attack. In this paper, we propose a (l, m, d)-anonymity model for multiple sensitive attributes similarity attack, where m is the dimension of the sensitive attributes. This model uses the semantic hierarchical tree to analyze and compute the semantic dissimilarity between sensitive attribute values, and each equivalence class must exist at least l sensitive attribute values that satisfy d-different on each dimension sensitive attribute. Meanwhile, in order to make the published data highly available, our model adopts the distance-based measurement method to divide the equivalence class. We carry out extensive experiments to certify the (1, m, d)-anonymity model can significantly reduce the probability of sensitive information leakage and protect individual privacy more effectively.

2018-11-28
Li, Bo, Roundy, Kevin, Gates, Chris, Vorobeychik, Yevgeniy.  2017.  Large-Scale Identification of Malicious Singleton Files. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :227–238.

We study a dataset of billions of program binary files that appeared on 100 million computers over the course of 12 months, discovering that 94% of these files were present on a single machine. Though malware polymorphism is one cause for the large number of singleton files, additional factors also contribute to polymorphism, given that the ratio of benign to malicious singleton files is 80:1. The huge number of benign singletons makes it challenging to reliably identify the minority of malicious singletons. We present a large-scale study of the properties, characteristics, and distribution of benign and malicious singleton files. We leverage the insights from this study to build a classifier based purely on static features to identify 92% of the remaining malicious singletons at a 1.4% percent false positive rate, despite heavy use of obfuscation and packing techniques by most malicious singleton files that we make no attempt to de-obfuscate. Finally, we demonstrate robustness of our classifier to important classes of automated evasion attacks.

2018-01-10
Zhang, L., Restuccia, F., Melodia, T., Pudlewski, S. M..  2017.  Learning to detect and mitigate cross-layer attacks in wireless networks: Framework and applications. 2017 IEEE Conference on Communications and Network Security (CNS). :1–9.

Security threats such as jamming and route manipulation can have significant consequences on the performance of modern wireless networks. To increase the efficacy and stealthiness of such threats, a number of extremely challenging, next-generation cross-layer attacks have been recently unveiled. Although existing research has thoroughly addressed many single-layer attacks, the problem of detecting and mitigating cross-layer attacks still remains unsolved. For this reason, in this paper we propose a novel framework to analyze and address cross-layer attacks in wireless networks. Specifically, our framework consists of a detection and a mitigation component. The attack detection component is based on a Bayesian learning detection scheme that constructs a model of observed evidence to identify stealthy attack activities. The mitigation component comprises a scheme that achieves the desired trade-off between security and performance. We specialize and evaluate the proposed framework by considering a specific cross-layer attack that uses jamming as an auxiliary tool to achieve route manipulation. Simulations and experimental results obtained with a testbed made up by USRP software-defined radios demonstrate the effectiveness of the proposed methodology.

2018-02-06
Masduki, B. W., Ramli, K., Salman, M..  2017.  Leverage Intrusion Detection System Framework for Cyber Situational Awareness System. 2017 International Conference on Smart Cities, Automation Intelligent Computing Systems (ICON-SONICS). :64–69.

As one of the security components in cyber situational awareness systems, Intrusion Detection System (IDS) is implemented by many organizations in their networks to address the impact of network attacks. Regardless of the tools and technologies used to generate security alarms, IDS can provide a situation overview of network traffic. With the security alarm data generated, most organizations do not have the right techniques and further analysis to make this alarm data more valuable for the security team to handle attacks and reduce risk to the organization. This paper proposes the IDS Metrics Framework for cyber situational awareness system that includes the latest technologies and techniques that can be used to create valuable metrics for security advisors in making the right decisions. This metrics framework consists of the various tools and techniques used to evaluate the data. The evaluation of the data is then used as a measurement against one or more reference points to produce an outcome that can be very useful for the decision making process of cyber situational awareness system. This metric offers an additional Graphical User Interface (GUI) tools that produces graphical displays and provides a great platform for analysis and decision-making by security teams.

2018-01-23
Alasad, Qutaiba, Yuan, Jiann, Fan, Deliang.  2017.  Leveraging All-Spin Logic to Improve Hardware Security. Proceedings of the on Great Lakes Symposium on VLSI 2017. :491–494.

Due to the globalization of Integrated Circuit (IC) design in the semiconductor industry and the outsourcing of chip manufacturing, third Party Intellectual Properties (3PIPs) become vulnerable to IP piracy, reverse engineering, counterfeit IC, and hardware trojans. A designer has to employ a strong technique to thwart such attacks, e.g. using Strong Logic Locking method [1]. But, such technique cannot be used to protect some circuits since the inserted key-gates rely on the topology of the circuit. Also, it requires higher power, delay, and area overheads compared to other techniques. In this paper, we present the use of spintronic devices to help protect ICs with less performance overhead. We then evaluate the proposed design based on security metric and performance overhead. One of the best spintronic device candidates is the All Spin Logic due to its unique properties: small area, no spin-charge signal conversion, and its compatibility with conventional CMOS technology.

2018-02-06
Haider, Syed Kamran, Omar, Hamza, Lebedev, Ilia, Devadas, Srinivas, van Dijk, Marten.  2017.  Leveraging Hardware Isolation for Process Level Access Control & Authentication. Proceedings of the 22Nd ACM on Symposium on Access Control Models and Technologies. :133–141.

Critical resource sharing among multiple entities in a processing system is inevitable, which in turn calls for the presence of appropriate authentication and access control mechanisms. Generally speaking, these mechanisms are implemented via trusted software "policy checkers" that enforce certain high level application-specific "rules" to enforce a policy. Whether implemented as operating system modules or embedded inside the application ad hoc, these policy checkers expose additional attack surface in addition to the application logic. In order to protect application software from an adversary, modern secure processing platforms, such as Intel's Software Guard Extensions (SGX), employ principled hardware isolation to offer secure software containers or enclaves to execute trusted sensitive code with some integrity and privacy guarantees against a privileged software adversary. We extend this model further and propose using these hardware isolation mechanisms to shield the authentication and access control logic essential to policy checker software. While relying on the fundamental features of modern secure processors, our framework introduces productive software design guidelines which enable a guarded environment to execute sensitive policy checking code - hence enforcing application control flow integrity - and afford flexibility to the application designer to construct appropriate high-level policies to customize policy checker software.

2018-03-26
Nie, Chuanyao, Wu, Hui, Zheng, Wenguang.  2017.  Lifetime-Aware Data Collection Using a Mobile Sink in WSNs with Unreachable Regions. Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems. :143–152.

Using mobile sinks to collect sensed data in WSNs (Wireless Sensor Network) is an effective technique for significantly improving the network lifetime. We investigate the problem of collecting sensed data using a mobile sink in a WSN with unreachable regions such that the network lifetime is maximized and the total tour length is minimized, and propose a polynomial-time heuristic, an ILP-based (Integer Linear Programming) heuristic and an MINLP-based (Mixed-Integer Non-Linear Programming) algorithm for constructing a shortest path routing forest for the sensor nodes in unreachable regions, two energy-efficient heuristics for partitioning the sensor nodes in reachable regions into disjoint clusters, and an efficient approach to convert the tour construction problem into a TSP (Travelling Salesman Problem). We have performed extensive simulations on 100 instances with 100, 150, 200, 250 and 300 sensor nodes in an urban area and a forest area. The simulation results show that the average lifetime of all the network instances achieved by the polynomial-time heuristic is 74% of that achieved by the ILP-based heuristic and 65% of that obtained by the MINLP-based algorithm, and our tour construction heuristic significantly outperforms the state-of-the-art tour construction heuristic EMPS.

2018-03-19
Roselin, A. G., Nanda, P., Nepal, S..  2017.  Lightweight Authentication Protocol (LAUP) for 6LoWPAN Wireless Sensor Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :371–378.

6LoWPAN networks involving wireless sensors consist of resource starving miniature sensor nodes. Since secured authentication of these resource-constrained sensors is one of the important considerations during communication, use of asymmetric key distribution scheme may not be the perfect choice to achieve secure authentication. Recent research shows that Lucky Thirteen attack has compromised Datagram Transport Layer Security (DTLS) with Cipher Block Chaining (CBC) mode for key establishment. Even though EAKES6Lo and S3K techniques for key establishment follow the symmetric key establishment method, they strongly rely on a remote server and trust anchor for secure key distribution. Our proposed Lightweight Authentication Protocol (LAUP) used a symmetric key method with no preshared keys and comprised of four flights to establish authentication and session key distribution between sensors and Edge Router in a 6LoWPAN environment. Each flight uses freshly derived keys from existing information such as PAN ID (Personal Area Network IDentification) and device identities. We formally verified our scheme using the Scyther security protocol verification tool for authentication properties such as Aliveness, Secrecy, Non-Injective Agreement and Non-Injective Synchronization. We simulated and evaluated the proposed LAUP protocol using COOJA simulator with ContikiOS and achieved less computational time and low power consumption compared to existing authentication protocols such as the EAKES6Lo and SAKES.