Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2018-02-21
Li, T., Wu, L., Zhang, X., Wu, X., Zhou, J., Wang, X..  2017.  A novel transition effect ring oscillator based true random number generator for a security SoC. 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). :1–2.

The transition effect ring oscillator (TERO) based true random number generator (TRNG) was proposed by Varchola and Drutarovsky in 2010. There were several stochastic models for this advanced TRNG based on ring oscillator. This paper proposed an improved TERO based TRNG and implements both on Altera Cyclone series FPGA platform and on a 0.13um CMOS ASIC process. FPGA experimental results show that this balanced TERO TRNG is in good performance as the experimental data results past the national institute of standards and technology (NIST) test in 1M bit/s. The TRNG is feasible for a security SoC.

2018-03-26
Razi, Afsaneh, Hua, Kien A., Majidi, Akbar.  2017.  NQ-GPLS: N-Queen Inspired Gateway Placement and Learning Automata-Based Gateway Selection in Wireless Mesh Network. Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access. :41–44.

This paper discusses two issues with multi-channel multi-radio Wireless Mesh Networks (WMN): gateway placement and gateway selection. To address these issues, a method will be proposed that places gateways at strategic locations to avoid congestion and adaptively learns to select a more efficient gateway for each wireless router by using learning automata. This method, called the N-queen Inspired Gateway Placement and Learning Automata-based Selection (NQ-GPLS), considers multiple metrics such as loss ratio, throughput, load at the gateways and delay. Simulation results from NS-2 simulator demonstrate that NQ-GPLS can significantly improve the overall network performance compared to a standard WMN.

2018-06-07
Farulla, G. A., Pane, A. J., Prinetto, P., Varriale, A..  2017.  An object-oriented open software architecture for security applications. 2017 IEEE East-West Design Test Symposium (EWDTS). :1–6.

This paper introduces a newly developed Object-Oriented Open Software Architecture designed for supporting security applications, while leveraging on the capabilities offered by dedicated Open Hardware devices. Specifically, we target the SEcube™ platform, an Open Hardware security platform based on a 3D SiP (System on Package) designed and produced by Blu5 Group. The platform integrates three components employed for security in a single package: a Cortex-M4 CPU, a FPGA and an EAL5+ certified Smart Card. The Open Software Architecture targets both the host machine and the security device, together with the secure communication among them. To maximize its usability, this architecture is organized in several abstraction layers, ranging from hardware interfaces to device drivers, from security APIs to advanced applications, like secure messaging and data protection. We aim at releasing a multi-platform Open Source security framework, where software and hardware cooperate to hide to both the developer and the final users classical security concepts like cryptographic algorithms and keys, focusing, instead, on common operational security concepts like groups and policies.

2018-03-26
Hu, Zhisheng, Zhu, Minghui, Liu, Peng.  2017.  Online Algorithms for Adaptive Cyber Defense on Bayesian Attack Graphs. Proceedings of the 2017 Workshop on Moving Target Defense. :99–109.

Emerging zero-day vulnerabilities in information and communications technology systems make cyber defenses very challenging. In particular, the defender faces uncertainties of; e.g., system states and the locations and the impacts of vulnerabilities. In this paper, we study the defense problem on a computer network that is modeled as a partially observable Markov decision process on a Bayesian attack graph. We propose online algorithms which allow the defender to identify effective defense policies when utility functions are unknown a priori. The algorithm performance is verified via numerical simulations based on real-world attacks.

2018-08-23
Bader, S., Gerlach, P., Michalzik, R..  2017.  Optically controlled current confinement in parallel-driven VCSELs. 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.

We have presented a unique PT-VCSEL arrangement which experimentally demonstrates the process of optically controlled current confinement. Lessons learned will be transferred to future generations of solitary device which will be optimized with respect to the degree of confinement (depending on the parameters of the PT, in particular the current gain), threshold current and electro-optic efficiency.

2018-06-11
Ding, W., Wang, J., Lu, K., Zhao, R., Wang, X., Zhu, Y..  2017.  Optimal Cache Management and Routing for Secure Content Delivery in Information-Centric Networks with Network Coding. 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC). :267–274.

Information-Centric Network (ICN) is one of the most promising network architecture to handle the problem of rapid increase of data traffic because it allows in-network cache. ICNs with Linear Network Coding (LNC) can greatly improve the performance of content caching and delivery. In this paper, we propose a Secure Content Caching and Routing (SCCR) framework based on Software Defined Network (SDN) to find the optimal cache management and routing for secure content delivery, which aims to firstly minimize the total cost of cache and bandwidth consumption and then minimize the usage of random chunks to guarantee information theoretical security (ITS). Specifically, we firstly propose the SCCR problem and then introduce the main ideas of the SCCR framework. Next, we formulate the SCCR problem to two Linear Programming (LP) formulations and design the SCCR algorithm based on them to optimally solve the SCCR problem. Finally, extensive simulations are conducted to evaluate the proposed SCCR framework and algorithms.

2018-03-05
Fan, Z., Wu, H., Xu, J., Tang, Y..  2017.  An Optimization Algorithm for Spatial Information Network Self-Healing Based on Software Defined Network. 2017 12th International Conference on Computer Science and Education (ICCSE). :369–374.

Spatial information network is an important part of the integrated space-terrestrial information network, its bearer services are becoming increasingly complex, and real-time requirements are also rising. Due to the structural vulnerability of the spatial information network and the dynamics of the network, this poses a serious challenge to how to ensure reliable and stable data transmission. The structural vulnerability of the spatial information network and the dynamics of the network brings a serious challenge of ensuring reliable and stable data transmission. Software Defined Networking (SDN), as a new network architecture, not only can quickly adapt to new business, but also make network reconfiguration more intelligent. In this paper, SDN is used to design the spatial information network architecture. An optimization algorithm for network self-healing based on SDN is proposed to solve the failure of switching node. With the guarantee of Quality of Service (QoS) requirement, the link is updated with the least link to realize the fast network reconfiguration and recovery. The simulation results show that the algorithm proposed in this paper can effectively reduce the delay caused by fault recovery.

2018-04-02
Muthumanickam, K., Ilavarasan, E..  2017.  Optimizing Detection of Malware Attacks through Graph-Based Approach. 2017 International Conference on Technical Advancements in Computers and Communications (ICTACC). :87–91.

Today the technology advancement in communication technology permits a malware author to introduce code obfuscation technique, for example, Application Programming Interface (API) hook, to make detecting the footprints of their code more difficult. A signature-based model such as Antivirus software is not effective against such attacks. In this paper, an API graph-based model is proposed with the objective of detecting hook attacks during malicious code execution. The proposed model incorporates techniques such as graph-generation, graph partition and graph comparison to distinguish a legitimate system call from malicious system call. The simulation results confirm that the proposed model outperforms than existing approaches.

2018-02-28
Shabalin, A. M., Kaliberda, E. A..  2017.  The organization of arrangements set to ensure enterprise IPV6 network secure work by modern switching equipment tools (using the example of a network attack on a default gateway). 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1–8.

The article issue is the enterprise information protection within the internet of things concept. The aim of research is to develop arrangements set to ensure secure enterprise IPv6 network operating. The object of research is the enterprise IPv6 network. The subject of research is modern switching equipment as a tool to ensure network protection. The research task is to prioritize functioning of switches in production and corporation enterprise networks, to develop a network host protection algorithm, to test the developed algorithm on the Cisco Packet Tracer 7 software emulator. The result of research is the proposed approach to IPv6-network security based on analysis of modern switches functionality, developed and tested enterprise network host protection algorithm under IPv6-protocol with an automated network SLAAC-configuration control, a set of arrangements for resisting default enterprise gateway attacks, using ACL, VLAN, SEND, RA Guard security technology, which allows creating sufficiently high level of networks security.

2018-02-06
Vorobiev, E. G., Petrenko, S. A., Kovaleva, I. V., Abrosimov, I. K..  2017.  Organization of the Entrusted Calculations in Crucial Objects of Informatization under Uncertainty. 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM). :299–300.

The urgent task of the organization of confidential calculations in crucial objects of informatization on the basis of domestic TPM technologies (Trusted Platform Module) is considered. The corresponding recommendations and architectural concepts of the special hardware TPM module (Trusted Platform Module) which is built in a computing platform are proposed and realize a so-called ``root of trust''. As a result it gave the organization the confidential calculations on the basis of domestic electronic base.

2018-03-26
d Krit, S., Haimoud, E..  2017.  Overview of Firewalls: Types and Policies: Managing Windows Embedded Firewall Programmatically. 2017 International Conference on Engineering MIS (ICEMIS). :1–7.

Due to the increasing threat of network attacks, Firewall has become crucial elements in network security, and have been widely deployed in most businesses and institutions for securing private networks. The function of a firewall is to examine each packet that passes through it and decide whether to letting them pass or halting them based on preconfigured rules and policies, so firewall now is the first defense line against cyber attacks. However most of people doesn't know how firewall works, and the most users of windows operating system doesn't know how to use the windows embedded firewall. This paper explains how firewall works, firewalls types, and all you need to know about firewall policies, then presents a novel application (QudsWall) developed by authors that manages windows embedded firewall and make it easy to use.

2018-08-23
Seal, S. K., Cianciosa, M. R., Hirshman, S. P., Wingen, A., Wilcox, R. S., Unterberg, E. A..  2017.  Parallel Reconstruction of Three Dimensional Magnetohydrodynamic Equilibria in Plasma Confinement Devices. 2017 46th International Conference on Parallel Processing (ICPP). :282–291.

Fast, accurate three dimensional reconstructions of plasma equilibria, crucial for physics interpretation of fusion data generated within confinement devices like stellarators/ tokamaks, are computationally very expensive and routinely require days, even weeks, to complete using serial approaches. Here, we present a parallel implementation of the three dimensional plasma reconstruction code, V3FIT. A formal analysis to identify the performance bottlenecks and scalability limits of this new parallel implementation, which combines both task and data parallelism, is presented. The theoretical findings are supported by empirical performance results on several thousands of processor cores of a Cray XC30 supercomputer. Parallel V3FIT is shown to deliver over 40X speedup, enabling fusion scientists to carry out three dimensional plasma equilibrium reconstructions at unprecedented scales in only a few hours (instead of in days/weeks) for the first time.

2018-09-28
Wei, P., Xia, B., Luo, X..  2017.  Parameter estimation and convergence analysis for a class of canonical dynamic systems by extended kalman filter. 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). :336–340.

There were many researches about the parameter estimation of canonical dynamic systems recently. Extended Kalman filter (EKF) is a popular parameter estimation method in virtue of its easy applications. This paper focuses on parameter estimation for a class of canonical dynamic systems by EKF. By constructing associated differential equation, the convergence of EKF parameter estimation for the canonical dynamic systems is analyzed. And the simulation demonstrates the good performance.

2018-05-02
Menezes, B. A. M., Wrede, F., Kuchen, H., Neto, F. B. de Lima.  2017.  Parameter selection for swarm intelligence algorithms \#x2014; Case study on parallel implementation of FSS. 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). :1–6.

Swarm Intelligence (SI) algorithms, such as Fish School Search (FSS), are well known as useful tools that can be used to achieve a good solution in a reasonable amount of time for complex optimization problems. And when problems increase in size and complexity, some increase in population size or number of iterations might be needed in order to achieve a good solution. In extreme cases, the execution time can be huge and other approaches, such as parallel implementations, might help to reduce it. This paper investigates the relation and trade off involving these three aspects in SI algorithms, namely population size, number of iterations, and problem complexity. The results with a parallel implementations of FSS show that increasing the population size is beneficial for finding good solutions. However, we observed an asymptotic behavior of the results, i.e. increasing the population over a certain threshold only leads to slight improvements.

Tan, R. K., Bora, Ş.  2017.  Parameter tuning in modeling and simulations by using swarm intelligence optimization algorithms. 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN). :148–152.

Modeling and simulation of real-world environments has in recent times being widely used. The modeling of environments whose examination in particular is difficult and the examination via the model becomes easier. The parameters of the modeled systems and the values they can obtain are quite large, and manual tuning is tedious and requires a lot of effort while it often it is almost impossible to get the desired results. For this reason, there is a need for the parameter space to be set. The studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in modeling and simulations. In this study, work has been done for a solution to be found to the problem of parameter tuning with swarm intelligence optimization algorithms Particle swarm optimization and Firefly algorithms. The performance of these algorithms in the parameter tuning process has been tested on 2 different agent based model studies. The performance of the algorithms has been observed by manually entering the parameters found for the model. According to the obtained results, it has been seen that the Firefly algorithm where the Particle swarm optimization algorithm works faster has better parameter values. With this study, the parameter tuning problem of the models in the different fields were solved.

Brennan, Tegan.  2017.  Path Cost Analysis for Side Channel Detection. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. :416–419.

Side-channels have been increasingly demonstrated as a practical threat to the confidentiality of private user information. Being able to statically detect these kinds of vulnerabilites is a key challenge in current computer security research. We introduce a new technique, path-cost analysis (PCA), for the detection of side-channels. Given a cost model for a type of side-channel, path-cost analysis assigns a symbolic cost expression to every node and every back edge of a method's control flow graph that gives an over-approximation for all possible observable values at that node or after traversing that cycle. Queries to a satisfiability solver on the maximum distance between specific pairs of nodes allow us to detect the presence of imbalanced paths through the control flow graph. When combined with taint analysis, we are able to answer the following question: does there exist a pair of paths in the method's control flow graph, differing only on branch conditions influenced by the secret, that differs in observable value by more than some given threshold? In fact, we are able to answer the specifically state what sets of secret-sensitive conditional statements introduce a side-channel detectable given some noise parameter. We extend this approach to an interprocedural analysis, resulting in a over-approximation of the number of true side-channels in the program according to the given cost model. Greater precision can be obtained by combining our method with predicate abstraction or symbolic execution to eliminate a subset of the infeasible paths through the control flow graph. We propose evaluating our method on a set of sizeable Java server-client applications.

2017-11-03
Kolodenker, Eugene, Koch, William, Stringhini, Gianluca, Egele, Manuel.  2017.  PayBreak: Defense Against Cryptographic Ransomware. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :599–611.

Similar to criminals in the physical world, cyber-criminals use a variety of illegal and immoral means to achieve monetary gains. Recently, malware known as ransomware started to leverage strong cryptographic primitives to hold victims' computer files "hostage" until a ransom is paid. Victims, with no way to defend themselves, are often advised to simply pay. Existing defenses against ransomware rely on ad-hoc mitigations that target the incorrect use of cryptography rather than generic live protection. To fill this gap in the defender's arsenal, we describe the approach, prototype implementation, and evaluation of a novel, automated, and most importantly proactive defense mechanism against ransomware. Our prototype, called PayBreak, effectively combats ransomware, and keeps victims' files safe. PayBreak is based on the insight that secure file encryption relies on hybrid encryption where symmetric session keys are used on the victim computer. PayBreak observes the use of these keys, holds them in escrow, and thus, can decrypt files that would otherwise only be recoverable by paying the ransom. Our prototype leverages low overhead dynamic hooking techniques and asymmetric encryption to realize the key escrow mechanism which allows victims to restore the files encrypted by ransomware. We evaluated PayBreak for its effectiveness against twenty hugely successful families of real-world ransomware, and demonstrate that our system can restore all files that are encrypted by samples from twelve of these families, including the infamous CryptoLocker, and more recent threats such as Locky and SamSam. Finally, PayBreak performs its protection task at negligible performance overhead for common office workloads and is thus ideally suited as a proactive online protection system.

2018-06-11
Guo, X., Dutta, R. G., He, J., Jin, Y..  2017.  PCH framework for IP runtime security verification. 2017 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :79–84.

Untrusted third-party vendors and manufacturers have raised security concerns in hardware supply chain. Among all existing solutions, formal verification methods provide powerful solutions in detection malicious behaviors at the pre-silicon stage. However, little work have been done towards built-in hardware runtime verification at the post-silicon stage. In this paper, a runtime formal verification framework is proposed to evaluate the trust of hardware during its execution. This framework combines the symbolic execution and SAT solving methods to validate the user defined properties. The proposed framework has been demonstrated on an FPGA platform using an SoC design with untrusted IPs. The experimentation results show that the proposed approach can provide high-level security assurance for hardware at runtime.

2017-12-20
Adiyatullin, A. F., Anderson, M. D., Flayac, H., Portella-Oberli, M. T., Jabeen, F., Ouellet-Plamondon, C., Sallen, G. C., Deveaud, B..  2017.  Periodic squeezing in a polariton Josephson junction. 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.

Microcavity polaritons are a hybrid photonic system that arises from the strong coupling of confined photons to quantum-well excitons. Due to their light-matter nature, polaritons possess a Kerr-like nonlinearity while being easily accessible by standard optical means. The ability to engineer confinement potentials in microcavities makes polaritons a very convenient system to study spatially localized bosonic populations, which might have great potential for the creation of novel photonic devices. Careful engineering of this system is predicted to induce Gaussian squeezing, a phenomenon that lies at a heart of the so-called unconventional photon blockade associated with single photon emission. This paper reveals a manifestation of the predicted squeezing by measuring the ultrafast time-dependent second-order correlation function g(2)(0) by means of a streak-camera acting as a single photon detector. The light emitted by the microcavity oscillates between Poissonian and super-Poissonian in phase with the Josephson dynamics. This behavior is remarkably well explained by quantum simulations, which predict such dynamical evolution of the squeezing parameters. The paper shows that a crucial prerequisite for squeezing is presence of a weak, but non-zero nonlinearity. Results open the way towards generation of nonclassical light in solid-state systems possessing a single particle nonlinearity like microwave Josephson junctions or silicon-on-chip resonators.

2018-08-23
Ziegler, A., Luisier, M..  2017.  Phonon confinement effects in diffusive quantum transport simulations with the effective mass approximation and k·p method. 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). :25–28.

Despite the continuous shrinking of the transistor dimensions, advanced modeling tools going beyond the ballistic limit of transport are still critically needed to ensure accurate device investigations. For that purpose we present here a straight-forward approach to include phonon confinement effects into dissipative quantum transport calculations based on the effective mass approximation (EMA) and the k·p method. The idea is to scale the magnitude of the deformation potentials describing the electron-phonon coupling to obtain the same low-field mobility as with full-band simulations and confined phonons. This technique is validated by demonstrating that after adjusting the mobility value of n- and p-type silicon nanowire transistors, the resulting EMA and k·p I-V characteristics agree well with those derived from full-band studies.

2018-01-10
Robyns, Pieter, Marin, Eduard, Lamotte, Wim, Quax, Peter, Singelée, Dave, Preneel, Bart.  2017.  Physical-layer Fingerprinting of LoRa Devices Using Supervised and Zero-shot Learning. Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks. :58–63.

Physical-layer fingerprinting investigates how features extracted from radio signals can be used to uniquely identify devices. This paper proposes and analyses a novel methodology to fingerprint LoRa devices, which is inspired by recent advances in supervised machine learning and zero-shot image classification. Contrary to previous works, our methodology does not rely on localized and low-dimensional features, such as those extracted from the signal transient or preamble, but uses the entire signal. We have performed our experiments using 22 LoRa devices with 3 different chipsets. Our results show that identical chipsets can be distinguished with 59% to 99% accuracy per symbol, whereas chipsets from different vendors can be fingerprinted with 99% to 100% accuracy per symbol. The fingerprinting can be performed using only inexpensive commercial off-the-shelf software defined radios, and a low sample rate of 1 Msps. Finally, we release all datasets and code pertaining to these experiments to the public domain.

2018-02-27
Han, Jun, Chung, Albert Jin, Tague, Patrick.  2017.  Pitchln: Eavesdropping via Intelligible Speech Reconstruction Using Non-Acoustic Sensor Fusion. Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks. :181–192.

Despite the advent of numerous Internet-of-Things (IoT) applications, recent research demonstrates potential side-channel vulnerabilities exploiting sensors which are used for event and environment monitoring. In this paper, we propose a new side-channel attack, where a network of distributed non-acoustic sensors can be exploited by an attacker to launch an eavesdropping attack by reconstructing intelligible speech signals. Specifically, we present PitchIn to demonstrate the feasibility of speech reconstruction from non-acoustic sensor data collected offline across networked devices. Unlike speech reconstruction which requires a high sampling frequency (e.g., textgreater 5 KHz), typical applications using non-acoustic sensors do not rely on richly sampled data, presenting a challenge to the speech reconstruction attack. Hence, PitchIn leverages a distributed form of Time Interleaved Analog-Digital-Conversion (TIADC) to approximate a high sampling frequency, while maintaining low per-node sampling frequency. We demonstrate how distributed TI-ADC can be used to achieve intelligibility by processing an interleaved signal composed of different sensors across networked devices. We implement PitchIn and evaluate reconstructed speech signal intelligibility via user studies. PitchIn has word recognition accuracy as high as 79%. Though some additional work is required to improve accuracy, our results suggest that eavesdropping using a fusion of non-acoustic sensors is a real and practical threat.

2018-03-05
Kohlbrenner, Anne, Araujo, Frederico, Taylor, Teryl, Stoecklin, Marc Ph..  2017.  POSTER: Hidden in Plain Sight: A Filesystem for Data Integrity and Confidentiality. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2523–2525.

A filesystem capable of curtailing data theft and ensuring file integrity protection through deception is introduced and evaluated. The deceptive filesystem transparently creates multiple levels of stacking to protect the base filesystem and monitor file accesses, hide and redact sensitive files with baits, and inject decoys onto fake system views purveyed to untrusted subjects, all while maintaining a pristine state to legitimate processes. Our prototype implementation leverages a kernel hot-patch to seamlessly integrate the new filesystem module into live and existing environments. We demonstrate the utility of our approach with a use case on the nefarious Erebus ransomware. We also show that the filesystem adds no I/O overhead for legitimate users.

2018-02-27
Song, Liwei, Mittal, Prateek.  2017.  POSTER: Inaudible Voice Commands. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2583–2585.

Voice assistants like Siri enable us to control IoT devices conveniently with voice commands, however, they also provide new attack opportunities for adversaries. Previous papers attack voice assistants with obfuscated voice commands by leveraging the gap between speech recognition system and human voice perception. The limitation is that these obfuscated commands are audible and thus conspicuous to device owners. In this poster, we propose a novel mechanism to directly attack the microphone used for sensing voice data with inaudible voice commands. We show that the adversary can exploit the microphone's non-linearity and play well-designed inaudible ultrasounds to cause the microphone to record normal voice commands, and thus control the victim device inconspicuously. We demonstrate via end-to-end real-world experiments that our inaudible voice commands can attack an Android phone and an Amazon Echo device with high success rates at a range of 2-3 meters.

2018-02-02
Chase, Melissa, Derler, David, Goldfeder, Steven, Orlandi, Claudio, Ramacher, Sebastian, Rechberger, Christian, Slamanig, Daniel, Zaverucha, Greg.  2017.  Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1825–1842.

We propose a new class of post-quantum digital signature schemes that: (a) derive their security entirely from the security of symmetric-key primitives, believed to be quantum-secure, and (b) have extremely small keypairs, and, (c) are highly parameterizable. In our signature constructions, the public key is an image y=f(x) of a one-way function f and secret key x. A signature is a non-interactive zero-knowledge proof of x, that incorporates a message to be signed. For this proof, we leverage recent progress of Giacomelli et al. (USENIX'16) in constructing an efficient Σ-protocol for statements over general circuits. We improve this Σ-protocol to reduce proof sizes by a factor of two, at no additional computational cost. While this is of independent interest as it yields more compact proofs for any circuit, it also decreases our signature sizes. We consider two possibilities to make the proof non-interactive: the Fiat-Shamir transform and Unruh's transform (EUROCRYPT'12, '15,'16). The former has smaller signatures, while the latter has a security analysis in the quantum-accessible random oracle model. By customizing Unruh's transform to our application, the overhead is reduced to 1.6x when compared to the Fiat-Shamir transform, which does not have a rigorous post-quantum security analysis. We implement and benchmark both approaches and explore the possible choice of f, taking advantage of the recent trend to strive for practical symmetric ciphers with a particularly low number of multiplications and end up using Low MC (EUROCRYPT'15).