Biblio
Advancements in the AI field unfold tremendous opportunities for society. Simultaneously, it becomes increasingly important to address emerging ramifications. Thereby, the focus is often set on ethical and safe design forestalling unintentional failures. However, cybersecurity-oriented approaches to AI safety additionally consider instantiations of intentional malice – including unethical malevolent AI design. Recently, an analogous emphasis on malicious actors has been expressed regarding security and safety for virtual reality (VR). In this vein, while the intersection of AI and VR (AIVR) offers a wide array of beneficial cross-fertilization possibilities, it is responsible to anticipate future malicious AIVR design from the onset on given the potential socio-psycho-technological impacts. For a simplified illustration, this paper analyzes the conceivable use case of Generative AI (here deepfake techniques) utilized for disinformation in immersive journalism. In our view, defenses against such future AIVR safety risks related to falsehood in immersive settings should be transdisciplinarily conceived from an immersive co-creation stance. As a first step, we motivate a cybersecurity-oriented procedure to generate defenses via immersive design fictions. Overall, there may be no panacea but updatable transdisciplinary tools including AIVR itself could be used to incrementally defend against malicious actors in AIVR.
In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.
The existing network intrusion detection methods have less label samples in the training process, and the detection accuracy is not high. In order to solve this problem, this paper designs a network intrusion detection method based on the GAN model by using the adversarial idea contained in the GAN. The model enhances the original training set by continuously generating samples, which expanding the label sample set. In order to realize the multi-classification of samples, this paper transforms the previous binary classification model of the generated adversarial network into a supervised learning multi-classification model. The loss function of training is redefined, so that the corresponding training method and parameter setting are obtained. Under the same experimental conditions, several performance indicators are used to compare the detection ability of the proposed method, the original classification model and other models. The experimental results show that the method proposed in this paper is more stable, robust, accurate detection rate, has good generalization ability, and can effectively realize network intrusion detection.
Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.
The increased power capacity and networking requirements in Extremely Fast Charging (XFC) systems for battery electric vehicles (BEVs) and the resulting increase in the adversarial attack surface call for security measures to be taken in the involved cyber-physical system (CPS). Within this system, the security of the BEV's battery management system (BMS) is of critical importance as the BMS is the first line of defense between the vehicle and the charge station. This study proposes an optimal control and moving-target defense (MTD) based novel approach for the security of the vehicle BMS) focusing on the charging process, during which a compromised vehicle may contaminate the XFC station and the whole grid. This paper is part of our ongoing research, which is one of the few, if not the first, reported studies in the literature on security-hardened BMS, aiming to increase the security and performance of operations between the charging station, the BMS and the battery system of electric vehicles. The developed MTD based switching strategy makes use of redundancies in the controller and feedback design. The performed simulations demonstrate an increased unpredictability and acceptable charging performance under adversarial attacks.
Research on the design of data center infrastructure is increasing, both from academia and industry, due to the rapid development of cloud-based applications such as search engines, social networks, and large-scale computing. On a large scale, data centers can consist of hundreds to thousands of servers that require systems with high-performance requirements and low downtime. To meet the network's needs in a dynamic data center, infrastructure of applications and services are growing. It takes a process of designing a network topology so that it can guarantee availability and security. One way to surmount this is by implementing the zero trust security model based on micro-segmentation. Zero trust is a security idea based on the principle of "never trust, always verify" in which no concepts of trust and untrust in network traffic. The zero trust security model implemented network traffic in the form of untrust. Micro-segmentation is a way to achieve zero trust by dividing a network into smaller logical segments to restrict the traffic. In this research, data center network performance based on software-defined networking with zero trust security model using micro-segmentation has been evaluated using a testbed simulation of Cisco Application Centric Infrastructure by measuring the round trip time, jitter, and packet loss during experiments. Performance evaluation results show that micro-segmentation adds an average round trip time of 4 μs and jitter of 11 μs without packet loss so that the security can be improved without significantly affecting network performance on the data center.
Recently, several cross-layer protocols have been designed for vehicular networks to optimize data dissemination by ensuring internal communications between routing and MAC layers. In this context, a cross-layer protocol, called TDMA-aware Routing Protocol for Multi-hop communications (TRPM), was proposed in order to efficiently select a relay node based on time slot scheduling information obtained from the MAC layer. However, due to the constant evolution of cyber-attacks on the routing and MAC layers, data dissemination in vehicular networks is vulnerable to several types of attack. In this paper, we identify the different attack models that can disrupt the cross-layer operation of the TRPM protocol and assess their impact on performance through simulation. Several new vulnerabilities related to the MAC slot scheduling process are identified. Exploiting of these vulnerabilities would lead to severe channel capacity wastage where up to half of the free slots could not be reserved.
To ensure quality of service and user experience, large Internet companies often monitor various Key Performance Indicators (KPIs) of their systems so that they can detect anomalies and identify failure in real time. However, due to a large number of various KPIs and the lack of high-quality labels, existing KPI anomaly detection approaches either perform well only on certain types of KPIs or consume excessive resources. Therefore, to realize generic and practical KPI anomaly detection in the real world, we propose a KPI anomaly detection framework named iRRCF-Active, which contains an unsupervised and white-box anomaly detector based on Robust Random Cut Forest (RRCF), and an active learning component. Specifically, we novelly propose an improved RRCF (iRRCF) algorithm to overcome the drawbacks of applying original RRCF in KPI anomaly detection. Besides, we also incorporate the idea of active learning to make our model benefit from high-quality labels given by experienced operators. We conduct extensive experiments on a large-scale public dataset and a private dataset collected from a large commercial bank. The experimental resulta demonstrate that iRRCF-Active performs better than existing traditional statistical methods, unsupervised learning methods and supervised learning methods. Besides, each component in iRRCF-Active has also been demonstrated to be effective and indispensable.
This article presents the modeling results of the ability to improve the accuracy of predicting the state of information security in the space of parameters of its threats. Information security of the protected object is considered as a dynamic system. Security threats to the protected object are used as the security system parameters most qualitatively and fully describing its behavior. The number of threats considered determines the dimension of the security state space. Based on the dynamic properties of changes in information security threats, the space region of the security system possible position at the moments of subsequent measurements of its state (a comprehensive security audit) is predicted. The corrected state of the information security system is considered to be the intersection of the area of subsequent measurement of the state of the system (integrated security audit) with the previously predicted area of the parameter space. Such a way to increase the accuracy of determining the state of a dynamic system in the space of its parameters can be called dynamic recurrent correction method. It is possible to use this method if the comprehensive security audit frequency is significantly higher than the frequency of monitoring changes in the dynamics of specific threats to information security. In addition, the data of the audit results and the errors of their receipt must be statistically independent with the results of monitoring changes in the dynamics of specific threats to information security. Improving the accuracy of the state of information security assessment in the space of the parameters of its threats can be used for various applications, including clarification of the communication channels characteristics, increasing the availability and efficiency of the telecommunications network, if it is an object of protection.
Energy Internet is a typical cyber-physical system (CPS), in which the disturbance on cyber part may result in the operation risks on the physical part. In order to perform CPS assessment and research the interactive influence between cyber part and physical part, an integrated energy internet CPS model which adopts information flow matrix, energy control flow matrix and information energy hybrid flow matrix is proposed in this paper. The proposed model has a higher computational efficacy compared with simulation based approaches. Then, based on the proposed model, the influence of cyber disturbances such as data dislocation, data delay and data error on the physical part are studied. Finally, a 3 MW PET based energy internet CPS is built using PSCAD/EMTDC software. The simulation results prove the validity of the proposed model and the correctness of the interactive influence analysis.