Biblio

Found 773 results

Filters: Keyword is Training  [Clear All Filters]
2023-06-29
Bide, Pramod, Varun, Patil, Gaurav, Shah, Samveg, Patil, Sakshi.  2022.  Fakequipo: Deep Fake Detection. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). :1–5.

Deep learning have a variety of applications in different fields such as computer vision, automated self-driving cars, natural language processing tasks and many more. One of such deep learning adversarial architecture changed the fundamentals of the data manipulation. The inception of Generative Adversarial Network (GAN) in the computer vision domain drastically changed the way how we saw and manipulated the data. But this manipulation of data using GAN has found its application in various type of malicious activities like creating fake images, swapped videos, forged documents etc. But now, these generative models have become so efficient at manipulating the data, especially image data, such that it is creating real life problems for the people. The manipulation of images and videos done by the GAN architectures is done in such a way that humans cannot differentiate between real and fake images/videos. Numerous researches have been conducted in the field of deep fake detection. In this paper, we present a structured survey paper explaining the advantages, gaps of the existing work in the domain of deep fake detection.

2023-06-23
Chen, Meixu, Webb, Richard, Bovik, Alan C..  2022.  Foveated MOVI-Codec: Foveation-based Deep Video Compression without Motion. 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). :1–5.

The requirements of much larger file sizes, different storage formats, and immersive viewing conditions pose significant challenges to the goals of compressing VR content. At the same time, the great potential of deep learning to advance progress on the video compression problem has driven a significant research effort. Because of the high bandwidth requirements of VR, there has also been significant interest in the use of space-variant, foveated compression protocols. We have integrated these techniques to create an end-to-end deep learning video compression framework. A feature of our new compression model is that it dispenses with the need for expensive search-based motion prediction computations by using displaced frame differences. We also implement foveation in our learning based approach, by introducing a Foveation Generator Unit (FGU) that generates foveation masks which direct the allocation of bits, significantly increasing compression efficiency while making it possible to retain an impression of little to no additional visual loss given an appropriate viewing geometry. Our experiment results reveal that our new compression model, which we call the Foveated MOtionless VIdeo Codec (Foveated MOVI-Codec), is able to efficiently compress videos without computing motion, while outperforming foveated version of both H.264 and H.265 on the widely used UVG dataset and on the HEVC Standard Class B Test Sequences.

Wang, Xuezhong.  2022.  Research on Video Surveillance Violence Detection Technology Based on Deep Convolution Network. 2022 International Conference on Information System, Computing and Educational Technology (ICISCET). :347–350.

In recent years, in order to continuously promote the construction of safe cities, security monitoring equipment has been widely used all over the country. How to use computer vision technology to realize effective intelligent analysis of violence in video surveillance is very important to maintain social stability and ensure people's life and property safety. Video surveillance system has been widely used because of its intuitive and convenient advantages. However, the existing video monitoring system has relatively single function, and generally only has the functions of monitoring video viewing, query and playback. In addition, relevant researchers pay less attention to the complex abnormal behavior of violence, and relevant research often ignores the differences between violent behaviors in different scenes. At present, there are two main problems in video abnormal behavior event detection: the video data of abnormal behavior is less and the definition of abnormal behavior in different scenes cannot be clearly distinguished. The main existing methods are to model normal behavior events first, and then define videos that do not conform to the normal model as abnormal, among which the learning method of video space-time feature representation based on deep learning shows a good prospect. In the face of massive surveillance videos, it is necessary to use deep learning to identify violent behaviors, so that the machine can learn to identify human actions, instead of manually monitoring camera images to complete the alarm of violent behaviors. Network training mainly uses video data set to identify network training.

2023-03-31
Hofbauer, Heinz, Martínez-Díaz, Yoanna, Luevano, Luis Santiago, Méndez-Vázquez, Heydi, Uhl, Andreas.  2022.  Utilizing CNNs for Cryptanalysis of Selective Biometric Face Sample Encryption. 2022 26th International Conference on Pattern Recognition (ICPR). :892–899.

When storing face biometric samples in accordance with ISO/IEC 19794 as JPEG2000 encoded images, it is necessary to encrypt them for the sake of users’ privacy. Literature suggests selective encryption of JPEG2000 images as fast and efficient method for encryption, the trade-off is that some information is left in plaintext. This could be used by an attacker, in case the encrypted biometric samples are leaked. In this work, we will attempt to utilize a convolutional neural network to perform cryptanalysis of the encryption scheme. That is, we want to assess if there is any information left in plaintext in the selectively encrypted face images which can be used to identify the person. The chosen approach is to train CNNs for biometric face recognition not only with plaintext face samples but additionally conduct a refinement training with partially encrypted data. If this system can successfully utilize encrypted face samples for biometric matching, we can show that the information left in encrypted biometric face samples is information actually usable for biometric recognition.The method works and we can show that a supposedly secure biometric sample still contains identifying information on average over the whole database.

ISSN: 2831-7475

2023-02-02
Pujar, Saurabh, Zheng, Yunhui, Buratti, Luca, Lewis, Burn, Morari, Alessandro, Laredo, Jim, Postlethwait, Kevin, Görn, Christoph.  2022.  Varangian: A Git Bot for Augmented Static Analysis. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :766–767.

The complexity and scale of modern software programs often lead to overlooked programming errors and security vulnerabilities. Developers often rely on automatic tools, like static analysis tools, to look for bugs and vulnerabilities. Static analysis tools are widely used because they can understand nontrivial program behaviors, scale to millions of lines of code, and detect subtle bugs. However, they are known to generate an excess of false alarms which hinder their utilization as it is counterproductive for developers to go through a long list of reported issues, only to find a few true positives. One of the ways proposed to suppress false positives is to use machine learning to identify them. However, training machine learning models requires good quality labeled datasets. For this purpose, we developed D2A [3], a differential analysis based approach that uses the commit history of a code repository to create a labeled dataset of Infer [2] static analysis output.

2023-06-09
Alyami, Areej, Sammon, David, Neville, Karen, Mahony, Carolanne.  2022.  The Critical Success Factors for Security Education, Training and Awareness (SETA) Programmes. 2022 Cyber Research Conference - Ireland (Cyber-RCI). :1—12.
This study explores the Critical Success Factors (CSFs) for Security Education, Training and Awareness (SETA) programmes. Data is gathered from 20 key informants (using semi-structured interviews) from various geographic locations including the Gulf nations, Middle East, USA, UK, and Ireland. The analysis of these key informant interviews produces eleven CSFs for SETA programmes. These CSFs are mapped along the phases of a SETA programme lifecycle (design, development, implementation, and evaluation).
2023-07-21
Sivasangari, A., Gomathi, R. M., Anandhi, T., Roobini, Roobini, Ajitha, P..  2022.  Facial Recognition System using Decision Tree Algorithm. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). :1542—1546.
Face recognition technology is widely employed in a variety of applications, including public security, criminal identification, multimedia data management, and so on. Because of its importance for practical applications and theoretical issues, the facial recognition system has received a lot of attention. Furthermore, numerous strategies have been offered, each of which has shown to be a significant benefit in the field of facial and pattern recognition systems. Face recognition still faces substantial hurdles in unrestricted situations, despite these advancements. Deep learning techniques for facial recognition are presented in this paper for accurate detection and identification of facial images. The primary goal of facial recognition is to recognize and validate facial features. The database consists of 500 color images of people that have been pre-processed and features extracted using Linear Discriminant Analysis. These features are split into 70 percent for training and 30 percent for testing of decision tree classifiers for the computation of face recognition system performance.
Liu, Mingchang, Sachidananda, Vinay, Peng, Hongyi, Patil, Rajendra, Muneeswaran, Sivaanandh, Gurusamy, Mohan.  2022.  LOG-OFF: A Novel Behavior Based Authentication Compromise Detection Approach. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
Password-based authentication system has been praised for its user-friendly, cost-effective, and easily deployable features. It is arguably the most commonly used security mechanism for various resources, services, and applications. On the other hand, it has well-known security flaws, including vulnerability to guessing attacks. Present state-of-the-art approaches have high overheads, as well as difficulties and unreliability during training, resulting in a poor user experience and a high false positive rate. As a result, a lightweight authentication compromise detection model that can make accurate detection with a low false positive rate is required.In this paper we propose – LOG-OFF – a behavior-based authentication compromise detection model. LOG-OFF is a lightweight model that can be deployed efficiently in practice because it does not include a labeled dataset. Based on the assumption that the behavioral pattern of a specific user does not suddenly change, we study the real-world authentication traffic data. The dataset contains more than 4 million records. We use two features to model the user behaviors, i.e., consecutive failures and login time, and develop a novel approach. LOG-OFF learns from the historical user behaviors to construct user profiles and makes probabilistic predictions of future login attempts for authentication compromise detection. LOG-OFF has a low false positive rate and latency, making it suitable for real-world deployment. In addition, it can also evolve with time and make more accurate detection as more data is being collected.
2023-04-14
Shao, Rulin, Shi, Zhouxing, Yi, Jinfeng, Chen, Pin-Yu, Hsieh, Cho-Jui.  2022.  Robust Text CAPTCHAs Using Adversarial Examples. 2022 IEEE International Conference on Big Data (Big Data). :1495–1504.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can induce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with font and background images respectively sampled from font and image libraries, and they are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we utilize a highly transferable adversarial attack designed for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, as well as various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarially trained CAPTCHA solvers and solvers trained with collected RTCs using manual annotation. Codes available at https://github.com/RulinShao/RTC.
2023-06-22
Hu, Fanliang, Ni, Feng.  2022.  Software Implementation of AES-128: Side Channel Attacks Based on Power Traces Decomposition. 2022 International Conference on Cyber Warfare and Security (ICCWS). :14–21.
Side Channel Attacks (SCAs), an attack that exploits the physical information generated when an encryption algorithm is executed on a device to recover the key, has become one of the key threats to the security of encrypted devices. Recently, with the development of deep learning, deep learning techniques have been applied to SCAs with good results on publicly available dataset experiences. In this paper, we propose a power traces decomposition method that divides the original power traces into two parts, where the data-influenced part is defined as data power traces (Tdata) and the other part is defined as device constant power traces, and use the Tdata for training the network model, which has more obvious advantages than using the original power traces for training the network model. To verify the effectiveness of the approach, we evaluated the ATXmega128D4 microcontroller by capturing the power traces generated when implementing AES-128. Experimental results show that network models trained using Tdata outperform network models trained using raw power traces (Traw ) in terms of classification accuracy, training time, cross-subkey recovery key, and cross-device recovery key.
2023-03-31
Vinod, G., Padmapriya, Dr. G..  2022.  An Intelligent Traffic Surveillance for Detecting Real-Time Objects Using Deep Belief Networks over Convolutional Neural Networks with improved Accuracy. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–4.
Aim: Object Detection is one of the latest topics in today’s world for detection of real time objects using Deep Belief Networks. Methods & Materials: Real-Time Object Detection is performed using Deep Belief Networks (N=24) over Convolutional Neural Networks (N=24) with the split size of training and testing dataset 70% and 30% respectively. Results: Deep Belief Networks has significantly better accuracy (81.2%) compared to Convolutional Neural Networks (47.7%) and attained significance value of p = 0.083. Conclusion: Deep Belief Networks achieved significantly better object detection than Convolutional Neural Networks for identifying real-time objects in traffic surveillance.
2023-03-17
Kamil, Samar, Siti Norul, Huda Sheikh Abdullah, Firdaus, Ahmad, Usman, Opeyemi Lateef.  2022.  The Rise of Ransomware: A Review of Attacks, Detection Techniques, and Future Challenges. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–7.
Cybersecurity is important in the field of information technology. One most recent pressing issue is information security. When we think of cybersecurity, the first thing that comes to mind is cyber-attacks, which are on the rise, such as Ransomware. Various governments and businesses take a variety of measures to combat cybercrime. People are still concerned about ransomware, despite numerous cybersecurity precautions. In ransomware, the attacker encrypts the victim’s files/data and demands payment to unlock the data. Cybersecurity is a collection of tools, regulations, security guards, security ideas, guidelines, risk management, activities, training, insurance, best practices, and technology used to secure the cyber environment, organization, and user assets. This paper analyses ransomware attacks, techniques for dealing with these attacks, and future challenges.
2023-03-31
Ren, Zuyu, Jiang, Weidong, Zhang, Xinyu.  2022.  Few-Shot HRRP Target Recognition Method Based on Gaussian Deep Belief Network and Model-Agnostic Meta-Learning. 2022 7th International Conference on Signal and Image Processing (ICSIP). :260–264.
In recent years, radar automatic target recognition (RATR) technology based on high-resolution range profile (HRRP) has received extensive attention in various fields. However, insufficient data on non-cooperative targets seriously affects recognition performance of this technique. For HRRP target recognition under few-shot condition, we proposed a novel gaussian deep belief network based on model-agnostic meta-learning (GDBN-MAML). In the proposed method, GDBN allowed real-value data to be transmitted over the entire network, which effectively avoided feature loss due to binarization requirements of conventional deep belief network (DBN) for data. In addition, we optimized the initial parameters of GDBN by multi-task learning based on MAML. In this way, the number of training samples required by the model for new recognition tasks could be reduced. We applied the proposed method to the HRRP recognition experiments of 3 types of 3D simulated aircraft models. The experimental results showed that the proposed method had higher recognition accuracy and generalization performance under few-shot condition compared with conventional deep learning methods.
2023-09-18
Jia, Jingyun, Chan, Philip K..  2022.  Representation Learning with Function Call Graph Transformations for Malware Open Set Recognition. 2022 International Joint Conference on Neural Networks (IJCNN). :1—8.
Open set recognition (OSR) problem has been a challenge in many machine learning (ML) applications, such as security. As new/unknown malware families occur regularly, it is difficult to exhaust samples that cover all the classes for the training process in ML systems. An advanced malware classification system should classify the known classes correctly while sensitive to the unknown class. In this paper, we introduce a self-supervised pre-training approach for the OSR problem in malware classification. We propose two transformations for the function call graph (FCG) based malware representations to facilitate the pretext task. Also, we present a statistical thresholding approach to find the optimal threshold for the unknown class. Moreover, the experiment results indicate that our proposed pre-training process can improve different performances of different downstream loss functions for the OSR problem.
2023-08-03
Ndichu, Samuel, Ban, Tao, Takahashi, Takeshi, Inoue, Daisuke.  2022.  Security-Alert Screening with Oversampling Based on Conditional Generative Adversarial Networks. 2022 17th Asia Joint Conference on Information Security (AsiaJCIS). :1–7.
Imbalanced class distribution can cause information loss and missed/false alarms for deep learning and machine-learning algorithms. The detection performance of traditional intrusion detection systems tend to degenerate due to skewed class distribution caused by the uneven allocation of observations in different kinds of attacks. To combat class imbalance and improve network intrusion detection performance, we adopt the conditional generative adversarial network (CTGAN) that enables the generation of samples of specific classes of interest. CTGAN builds on the generative adversarial networks (GAN) architecture to model tabular data and generate high quality synthetic data by conditionally sampling rows from the generated model. Oversampling using CTGAN adds instances to the minority class such that both data in the majority and the minority class are of equal distribution. The generated security alerts are used for training classifiers that realize critical alert detection. The proposed scheme is evaluated on a real-world dataset collected from security operation center of a large enterprise. The experiment results show that detection accuracy can be substantially improved when CTGAN is adopted to produce a balanced security-alert dataset. We believe the proposed CTGAN-based approach can cast new light on building effective systems for critical alert detection with reduced missed/false alarms.
ISSN: 2765-9712
2023-06-23
Guarino, Idio, Bovenzi, Giampaolo, Di Monda, Davide, Aceto, Giuseppe, Ciuonzo, Domenico, Pescapè, Antonio.  2022.  On the use of Machine Learning Approaches for the Early Classification in Network Intrusion Detection. 2022 IEEE International Symposium on Measurements & Networking (M&N). :1–6.
Current intrusion detection techniques cannot keep up with the increasing amount and complexity of cyber attacks. In fact, most of the traffic is encrypted and does not allow to apply deep packet inspection approaches. In recent years, Machine Learning techniques have been proposed for post-mortem detection of network attacks, and many datasets have been shared by research groups and organizations for training and validation. Differently from the vast related literature, in this paper we propose an early classification approach conducted on CSE-CIC-IDS2018 dataset, which contains both benign and malicious traffic, for the detection of malicious attacks before they could damage an organization. To this aim, we investigated a different set of features, and the sensitivity of performance of five classification algorithms to the number of observed packets. Results show that ML approaches relying on ten packets provide satisfactory results.
ISSN: 2639-5061
2022-12-01
Srikanth, K S, Ramesh, T K, Palaniswamy, Suja, Srinivasan, Ranganathan.  2022.  XAI based model evaluation by applying domain knowledge. 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—6.
Artificial intelligence(AI) is used in decision support systems which learn and perceive features as a function of the number of layers and the weights computed during training. Due to their inherent black box nature, it is insufficient to consider accuracy, precision and recall as metrices for evaluating a model's performance. Domain knowledge is also essential to identify features that are significant by the model to arrive at its decision. In this paper, we consider a use case of face mask recognition to explain the application and benefits of XAI. Eight models used to solve the face mask recognition problem were selected. GradCAM Explainable AI (XAI) is used to explain the state-of-art models. Models that were selecting incorrect features were eliminated even though, they had a high accuracy. Domain knowledge relevant to face mask recognition viz., facial feature importance is applied to identify the model that picked the most appropriate features to arrive at the decision. We demonstrate that models with high accuracies need not be necessarily select the right features. In applications requiring rapid deployment, this method can act as a deciding factor in shortlisting models with a guarantee that the models are looking at the right features for arriving at the classification. Furthermore, the outcomes of the model can be explained to the user enhancing their confidence on the AI model being deployed in the field.
2023-02-03
Guaña-Moya, Javier, Chiluisa-Chiluisa, Marco Antonio, Jaramillo-Flores, Paulina del Carmen, Naranjo-Villota, Darwin, Mora-Zambrano, Eugenio Rafael, Larrea-Torres, Lenin Gerardo.  2022.  Ataques de phishing y cómo prevenirlos Phishing attacks and how to prevent them. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
The vertiginous technological advance related to globalization and the new digital era has led to the design of new techniques and tools that deal with the risks of technology and information. Terms such as "cybersecurity" stand out, which corresponds to that area of computer science that is responsible for the development and implementation of information protection mechanisms and technological infrastructure, in order to deal with cyberattacks. Phishing is a crime that uses social engineering and technical subterfuge to steal personal identity data and financial account credentials from users, representing a high economic and financial risk worldwide, both for individuals and for large organizations. The objective of this research is to determine the ways to prevent phishing, by analyzing the characteristics of this computer fraud, the various existing modalities and the main prevention strategies, in order to increase the knowledge of users about this. subject, highlighting the importance of adequate training that allows establishing efficient mechanisms to detect and block phishing.
ISSN: 2166-0727
2023-01-20
Khan, Rashid, Saxena, Neetesh, Rana, Omer, Gope, Prosanta.  2022.  ATVSA: Vehicle Driver Profiling for Situational Awareness. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :348–357.

Increasing connectivity and automation in vehicles leads to a greater potential attack surface. Such vulnerabilities within vehicles can also be used for auto-theft, increasing the potential for attackers to disable anti-theft mechanisms implemented by vehicle manufacturers. We utilize patterns derived from Controller Area Network (CAN) bus traffic to verify driver “behavior”, as a basis to prevent vehicle theft. Our proposed model uses semi-supervised learning that continuously profiles a driver, using features extracted from CAN bus traffic. We have selected 15 key features and obtained an accuracy of 99% using a dataset comprising a total of 51 features across 10 different drivers. We use a number of data analysis algorithms, such as J48, Random Forest, JRip and clustering, using 94K records. Our results show that J48 is the best performing algorithm in terms of training and testing (1.95 seconds and 0.44 seconds recorded, respectively). We also analyze the effect of using a sliding window on algorithm performance, altering the size of the window to identify the impact on prediction accuracy.

2023-02-03
Philomina, Josna, Fahim Fathima, K A, Gayathri, S, Elias, Glory Elizabeth, Menon, Abhinaya A.  2022.  A comparitative study of machine learning models for the detection of Phishing Websites. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–7.
Global cybersecurity threats have grown as a result of the evolving digital transformation. Cybercriminals have more opportunities as a result of digitization. Initially, cyberthreats take the form of phishing in order to gain confidential user credentials.As cyber-attacks get more sophisticated and sophisticated, the cybersecurity industry is faced with the problem of utilising cutting-edge technology and techniques to combat the ever-present hostile threats. Hackers use phishing to persuade customers to grant them access to a company’s digital assets and networks. As technology progressed, phishing attempts became more sophisticated, necessitating the development of tools to detect phishing.Machine learning is unsupervised one of the most powerful weapons in the fight against terrorist threats. The features used for phishing detection, as well as the approaches employed with machine learning, are discussed in this study.In this light, the study’s major goal is to propose a unique, robust ensemble machine learning model architecture that gives the highest prediction accuracy with the lowest error rate, while also recommending a few alternative robust machine learning models.Finally, the Random forest algorithm attained a maximum accuracy of 96.454 percent. But by implementing a hybrid model including the 3 classifiers- Decision Trees,Random forest, Gradient boosting classifiers, the accuracy increases to 98.4 percent.
2023-01-06
Alotaibi, Jamal, Alazzawi, Lubna.  2022.  PPIoV: A Privacy Preserving-Based Framework for IoV- Fog Environment Using Federated Learning and Blockchain. 2022 IEEE World AI IoT Congress (AIIoT). :597—603.
The integration of the Internet-of-Vehicles (IoV) and fog computing benefits from cooperative computing and analysis of environmental data while avoiding network congestion and latency. However, when private data is shared across fog nodes or the cloud, there exist privacy issues that limit the effectiveness of IoV systems, putting drivers' safety at risk. To address this problem, we propose a framework called PPIoV, which is based on Federated Learning (FL) and Blockchain technologies to preserve the privacy of vehicles in IoV.Typical machine learning methods are not well suited for distributed and highly dynamic systems like IoV since they train on data with local features. Therefore, we use FL to train the global model while preserving privacy. Also, our approach is built on a scheme that evaluates the reliability of vehicles participating in the FL training process. Moreover, PPIoV is built on blockchain to establish trust across multiple communication nodes. For example, when the local learned model updates from the vehicles and fog nodes are communicated with the cloud to update the global learned model, all transactions take place on the blockchain. The outcome of our experimental study shows that the proposed method improves the global model's accuracy as a result of allowing reputed vehicles to update the global model.
Chen, Tianlong, Zhang, Zhenyu, Zhang, Yihua, Chang, Shiyu, Liu, Sijia, Wang, Zhangyang.  2022.  Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :588—599.
Trojan attacks threaten deep neural networks (DNNs) by poisoning them to behave normally on most samples, yet to produce manipulated results for inputs attached with a particular trigger. Several works attempt to detect whether a given DNN has been injected with a specific trigger during the training. In a parallel line of research, the lottery ticket hypothesis reveals the existence of sparse sub-networks which are capable of reaching competitive performance as the dense network after independent training. Connecting these two dots, we investigate the problem of Trojan DNN detection from the brand new lens of sparsity, even when no clean training data is available. Our crucial observation is that the Trojan features are significantly more stable to network pruning than benign features. Leveraging that, we propose a novel Trojan network detection regime: first locating a “winning Trojan lottery ticket” which preserves nearly full Trojan information yet only chance-level performance on clean inputs; then recovering the trigger embedded in this already isolated sub-network. Extensive experiments on various datasets, i.e., CIFAR-10, CIFAR-100, and ImageNet, with different network architectures, i.e., VGG-16, ResNet-18, ResNet-20s, and DenseNet-100 demonstrate the effectiveness of our proposal. Codes are available at https://github.com/VITA-Group/Backdoor-LTH.
Siriwardhana, Yushan, Porambage, Pawani, Liyanage, Madhusanka, Ylianttila, Mika.  2022.  Robust and Resilient Federated Learning for Securing Future Networks. 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). :351—356.
Machine Learning (ML) and Artificial Intelligence (AI) techniques are widely adopted in the telecommunication industry, especially to automate beyond 5G networks. Federated Learning (FL) recently emerged as a distributed ML approach that enables localized model training to keep data decentralized to ensure data privacy. In this paper, we identify the applicability of FL for securing future networks and its limitations due to the vulnerability to poisoning attacks. First, we investigate the shortcomings of state-of-the-art security algorithms for FL and perform an attack to circumvent FoolsGold algorithm, which is known as one of the most promising defense techniques currently available. The attack is launched with the addition of intelligent noise at the poisonous model updates. Then we propose a more sophisticated defense strategy, a threshold-based clustering mechanism to complement FoolsGold. Moreover, we provide a comprehensive analysis of the impact of the attack scenario and the performance of the defense mechanism.
2023-01-05
Jaimes, Luis G., Calderon, Juan, Shriver, Scott, Hendricks, Antonio, Lozada, Javier, Seenith, Sivasundaram, Chintakunta, Harish.  2022.  A Generative Adversarial Approach for Sybil Attacks Recognition for Vehicular Crowdsensing. 2022 International Conference on Connected Vehicle and Expo (ICCVE). :1–7.
Vehicular crowdsensing (VCS) is a subset of crowd-sensing where data collection is outsourced to group vehicles. Here, an entity interested in collecting data from a set of Places of Sensing Interest (PsI), advertises a set of sensing tasks, and the associated rewards. Vehicles attracted by the offered rewards deviate from their ongoing trajectories to visit and collect from one or more PsI. In this win-to-win scenario, vehicles reach their final destination with the extra reward, and the entity obtains the desired samples. Unfortunately, the efficiency of VCS can be undermined by the Sybil attack, in which an attacker can benefit from the injection of false vehicle identities. In this paper, we present a case study and analyze the effects of such an attack. We also propose a defense mechanism based on generative adversarial neural networks (GANs). We discuss GANs' advantages, and drawbacks in the context of VCS, and new trends in GANs' training that make them suitable for VCS.
2023-05-11
Jawdeh, Shaya Abou, Choi, Seungdeog, Liu, Chung-Hung.  2022.  Model-Based Deep Learning for Cyber-Attack Detection in Electric Drive Systems. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). :567–573.
Modern cyber-physical systems that comprise controlled power electronics are becoming more internet-of-things-enabled and vulnerable to cyber-attacks. Therefore, hardening those systems against cyber-attacks becomes an emerging need. In this paper, a model-based deep learning cyber-attack detection to protect electric drive systems from cyber-attacks on the physical level is proposed. The approach combines the model physics with a deep learning-based classifier. The combination of model-based and deep learning will enable more accurate cyber-attack detection results. The proposed cyber-attack detector will be trained and simulated on a PM based electric drive system to detect false data injection attacks on the drive controller command and sensor signals.
ISSN: 2470-6647