Biblio

Found 773 results

Filters: Keyword is Training  [Clear All Filters]
2023-05-12
Mason, Celeste, Steinicke, Frank.  2022.  Personalization of Intelligent Virtual Agents for Motion Training in Social Settings. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :319–322.
Intelligent Virtual Agents (IVAs) have become ubiquitous in our daily lives, displaying increased complexity of form and function. Initial IVA development efforts provided basic functionality to suit users' needs, typically in work or educational settings, but are now present in numerous contexts in more realistic, complex forms. In this paper, we focus on personalization of embodied human intelligent virtual agents to assist individuals as part of physical training “exergames”.
2023-03-03
Hong, Geng, Yang, Zhemin, Yang, Sen, Liaoy, Xiaojing, Du, Xiaolin, Yang, Min, Duan, Haixin.  2022.  Analyzing Ground-Truth Data of Mobile Gambling Scams. 2022 IEEE Symposium on Security and Privacy (SP). :2176–2193.
With the growth of mobile computing techniques, mobile gambling scams have seen a rampant increase in the recent past. In mobile gambling scams, miscreants deliver scamming messages via mobile instant messaging, host scam gambling platforms on mobile apps, and adopt mobile payment channels. To date, there is little quantitative knowledge about how this trending cybercrime operates, despite causing daily fraud losses estimated at more than \$\$\$522,262 USD. This paper presents the first empirical study based on ground-truth data of mobile gambling scams, associated with 1,461 scam incident reports and 1,487 gambling scam apps, spanning from January 1, 2020 to December 31, 2020. The qualitative and quantitative analysis of this ground-truth data allows us to characterize the operational pipeline and full fraud kill chain of mobile gambling scams. In particular, we study the social engineering tricks used by scammers and reveal their effectiveness. Our work provides a systematic analysis of 1,068 confirmed Android and 419 iOS scam apps, including their development frameworks, declared permissions, compatibility, and backend network infrastructure. Perhaps surprisingly, our study unveils that public online app generators have been abused to develop gambling scam apps. Our analysis reveals several payment channels (ab)used by gambling scam app and uncovers a new type of money mule-based payment channel with the average daily gambling deposit of \$\$\$400,000 USD. Our findings enable a better understanding of the mobile gambling scam ecosystem, and suggest potential avenues to disrupt these scam activities.
ISSN: 2375-1207
2023-09-20
Dixit, Utkarsh, Bhatia, Suman, Bhatia, Pramod.  2022.  Comparison of Different Machine Learning Algorithms Based on Intrusion Detection System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:667—672.
An IDS is a system that helps in detecting any kind of doubtful activity on a computer network. It is capable of identifying suspicious activities at both the levels i.e. locally at the system level and in transit at the network level. Since, the system does not have its own dataset as a result it is inefficient in identifying unknown attacks. In order to overcome this inefficiency, we make use of ML. ML assists in analysing and categorizing attacks on diverse datasets. In this study, the efficacy of eight machine learning algorithms based on KDD CUP99 is assessed. Based on our implementation and analysis, amongst the eight Algorithms considered here, Support Vector Machine (SVM), Random Forest (RF) and Decision Tree (DT) have the highest testing accuracy of which got SVM does have the highest accuracy
2023-04-14
Kimbrough, Turhan, Tian, Pu, Liao, Weixian, Blasch, Erik, Yu, Wei.  2022.  Deep CAPTCHA Recognition Using Encapsulated Preprocessing and Heterogeneous Datasets. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an important security technique designed to deter bots from abusing software systems, which has broader applications in cyberspace. CAPTCHAs come in a variety of forms, including the deciphering of obfuscated text, transcribing of audio messages, and tracking mouse movement, among others. This paper focuses on using deep learning techniques to recognize text-based CAPTCHAs. In particular, our work focuses on generating training datasets using different CAPTCHA schemes, along with a pre-processing technique allowing for character-based recognition. We have encapsulated the CRABI (CAPTCHA Recognition with Attached Binary Images) framework to give an image multiple labels for improvement in feature extraction. Using real-world datasets, performance evaluations are conducted to validate the efficacy of our proposed approach on several neural network architectures (e.g., custom CNN architecture, VGG16, ResNet50, and MobileNet). The experimental results confirm that over 90% accuracy can be achieved on most models.
2022-12-20
Rakin, Adnan Siraj, Chowdhuryy, Md Hafizul Islam, Yao, Fan, Fan, Deliang.  2022.  DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories. 2022 IEEE Symposium on Security and Privacy (SP). :1157–1174.
Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., 1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades).
ISSN: 2375-1207
2023-01-20
Omeroglu, Asli Nur, Mohammed, Hussein M. A., Oral, E. Argun, Yucel Ozbek, I..  2022.  Detection of Moving Target Direction for Ground Surveillance Radar Based on Deep Learning. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
In defense and security applications, detection of moving target direction is as important as the target detection and/or target classification. In this study, a methodology for the detection of different mobile targets as approaching or receding was proposed for ground surveillance radar data, and convolutional neural networks (CNN) based on transfer learning were employed for this purpose. In order to improve the classification performance, the use of two key concepts, namely Deep Convolutional Generative Adversarial Network (DCGAN) and decision fusion, has been proposed. With DCGAN, the number of limited available data used for training was increased, thus creating a bigger training dataset with identical distribution to the original data for both moving directions. This generated synthetic data was then used along with the original training data to train three different pre-trained deep convolutional networks. Finally, the classification results obtained from these networks were combined with decision fusion approach. In order to evaluate the performance of the proposed method, publicly available RadEch dataset consisting of eight ground target classes was utilized. Based on the experimental results, it was observed that the combined use of the proposed DCGAN and decision fusion methods increased the detection accuracy of moving target for person, vehicle, group of person and all target groups, by 13.63%, 10.01%, 14.82% and 8.62%, respectively.
2023-07-21
Churaev, Egor, Savchenko, Andrey V..  2022.  Multi-user facial emotion recognition in video based on user-dependent neural network adaptation. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT). :1—5.
In this paper, the multi-user video-based facial emotion recognition is examined in the presence of a small data set with the emotions of end users. By using the idea of speaker-dependent speech recognition, we propose a novel approach to solve this task if labeled video data from end users is available. During the training stage, a deep convolutional neural network is trained for user-independent emotion classification. Next, this classifier is adapted (fine-tuned) on the emotional video of a concrete person. During the recognition stage, the user is identified based on face recognition techniques, and an emotional model of the recognized user is applied. It is experimentally shown that this approach improves the accuracy of emotion recognition by more than 20% for the RAVDESS dataset.
2023-02-17
Ryndyuk, V. A., Varakin, Y. S., Pisarenko, E. A..  2022.  New Architecture of Transformer Networks for Generating Natural Dialogues. 2022 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–5.
The new architecture of transformer networks proposed in the work can be used to create an intelligent chat bot that can learn the process of communication and immediately model responses based on what has been said. The essence of the new mechanism is to divide the information flow into two branches containing the history of the dialogue with different levels of granularity. Such a mechanism makes it possible to build and develop the personality of a dialogue agent in the process of dialogue, that is, to accurately imitate the natural behavior of a person. This gives the interlocutor (client) the feeling of talking to a real person. In addition, making modifications to the structure of such a network makes it possible to identify a likely attack using social engineering methods. The results obtained after training the created system showed the fundamental possibility of using a neural network of a new architecture to generate responses close to natural ones. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. The new technology can be used in social engineering attack detection systems, which is a big problem at present. The novelty and prospects of the proposed architecture of the neural network also lies in the possibility of creating on its basis dialogue systems with a high level of biological plausibility.
ISSN: 2769-3538
2023-03-03
Shrestha, Raj, Leinonen, Juho, Zavgorodniaia, Albina, Hellas, Arto, Edwards, John.  2022.  Pausing While Programming: Insights From Keystroke Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). :187–198.
Pauses in typing are generally considered to indicate cognitive processing and so are of interest in educational contexts. While much prior work has looked at typing behavior of Computer Science students, this paper presents results of a study specifically on the pausing behavior of students in Introductory Computer Programming. We investigate the frequency of pauses of different lengths, what last actions students take before pausing, and whether there is a correlation between pause length and performance in the course. We find evidence that frequency of pauses of all lengths is negatively correlated with performance, and that, while some keystrokes initiate pauses consistently across pause lengths, other keystrokes more commonly initiate short or long pauses. Clustering analysis discovers two groups of students, one that takes relatively fewer mid-to-long pauses and performs better on exams than the other.
2023-03-17
Dhasade, Akash, Dresevic, Nevena, Kermarrec, Anne-Marie, Pires, Rafael.  2022.  TEE-based decentralized recommender systems: The raw data sharing redemption. 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :447–458.
Recommenders are central in many applications today. The most effective recommendation schemes, such as those based on collaborative filtering (CF), exploit similarities between user profiles to make recommendations, but potentially expose private data. Federated learning and decentralized learning systems address this by letting the data stay on user's machines to preserve privacy: each user performs the training on local data and only the model parameters are shared. However, sharing the model parameters across the network may still yield privacy breaches. In this paper, we present Rex, the first enclave-based decentralized CF recommender. Rex exploits Trusted execution environments (TEE), such as Intel software guard extensions (SGX), that provide shielded environments within the processor to improve convergence while preserving privacy. Firstly, Rex enables raw data sharing, which ultimately speeds up convergence and reduces the network load. Secondly, Rex fully preserves privacy. We analyze the impact of raw data sharing in both deep neural network (DNN) and matrix factorization (MF) recommenders and showcase the benefits of trusted environments in a full-fledged implementation of Rex. Our experimental results demonstrate that through raw data sharing, Rex significantly decreases the training time by 18.3 x and the network load by 2 orders of magnitude over standard decentralized approaches that share only parameters, while fully protecting privacy by leveraging trustworthy hardware enclaves with very little overhead.
ISSN: 1530-2075
2023-04-28
Li, Zongjie, Ma, Pingchuan, Wang, Huaijin, Wang, Shuai, Tang, Qiyi, Nie, Sen, Wu, Shi.  2022.  Unleashing the Power of Compiler Intermediate Representation to Enhance Neural Program Embeddings. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :2253–2265.
Neural program embeddings have demonstrated considerable promise in a range of program analysis tasks, including clone identification, program repair, code completion, and program synthesis. However, most existing methods generate neural program embeddings di-rectly from the program source codes, by learning from features such as tokens, abstract syntax trees, and control flow graphs. This paper takes a fresh look at how to improve program embed-dings by leveraging compiler intermediate representation (IR). We first demonstrate simple yet highly effective methods for enhancing embedding quality by training embedding models alongside source code and LLVM IR generated by default optimization levels (e.g., -02). We then introduce IRGEN, a framework based on genetic algorithms (GA), to identify (near-)optimal sequences of optimization flags that can significantly improve embedding quality. We use IRGEN to find optimal sequences of LLVM optimization flags by performing GA on source code datasets. We then extend a popular code embedding model, CodeCMR, by adding a new objective based on triplet loss to enable a joint learning over source code and LLVM IR. We benchmark the quality of embedding using a rep-resentative downstream application, code clone detection. When CodeCMR was trained with source code and LLVM IRs optimized by findings of IRGEN, the embedding quality was significantly im-proved, outperforming the state-of-the-art model, CodeBERT, which was trained only with source code. Our augmented CodeCMR also outperformed CodeCMR trained over source code and IR optimized with default optimization levels. We investigate the properties of optimization flags that increase embedding quality, demonstrate IRGEN's generalization in boosting other embedding models, and establish IRGEN's use in settings with extremely limited training data. Our research and findings demonstrate that a straightforward addition to modern neural code embedding models can provide a highly effective enhancement.
2023-07-21
Shiqi, Li, Yinghui, Han.  2022.  Detection of Bad Data and False Data Injection Based on Back-Propagation Neural Network. 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia). :101—105.
Power system state estimation is an essential tool for monitoring the operating conditions of the grid. However, the collected measurements may not always be reliable due to bad data from various faults as well as the increasing potential of being exposed to cyber-attacks, particularly from data injection attacks. To enhance the accuracy of state estimation, this paper presents a back-propagation neural network to detect and identify bad data and false data injections. A variety of training data exhibiting different statistical properties were used for training. The developed strategy was tested on the IEEE 30-bus and 118-bus power systems using MATLAB. Simulation results revealed the feasibility of the method for the detection and differentiation of bad data and false data injections in various operating scenarios.
2023-05-12
Wei, Yuecen, Fu, Xingcheng, Sun, Qingyun, Peng, Hao, Wu, Jia, Wang, Jinyan, Li, Xianxian.  2022.  Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation. 2022 IEEE International Conference on Data Mining (ICDM). :528–537.
Social networks are considered to be heterogeneous graph neural networks (HGNNs) with deep learning technological advances. HGNNs, compared to homogeneous data, absorb various aspects of information about individuals in the training stage. That means more information has been covered in the learning result, especially sensitive information. However, the privacy-preserving methods on homogeneous graphs only preserve the same type of node attributes or relationships, which cannot effectively work on heterogeneous graphs due to the complexity. To address this issue, we propose a novel heterogeneous graph neural network privacy-preserving method based on a differential privacy mechanism named HeteDP, which provides a double guarantee on graph features and topology. In particular, we first define a new attack scheme to reveal privacy leakage in the heterogeneous graphs. Specifically, we design a two-stage pipeline framework, which includes the privacy-preserving feature encoder and the heterogeneous link reconstructor with gradients perturbation based on differential privacy to tolerate data diversity and against the attack. To better control the noise and promote model performance, we utilize a bi-level optimization pattern to allocate a suitable privacy budget for the above two modules. Our experiments on four public benchmarks show that the HeteDP method is equipped to resist heterogeneous graph privacy leakage with admirable model generalization.
ISSN: 2374-8486
2023-08-18
KK, Sabari, Shrivastava, Saurabh, V, Sangeetha..  2022.  Anomaly-based Intrusion Detection using GAN for Industrial Control Systems. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—6.
In recent years, cyber-attacks on modern industrial control systems (ICS) have become more common and it acts as a victim to various kind of attackers. The percentage of attacked ICS computers in the world in 2021 is 39.6%. To identify the anomaly in a large database system is a challenging task. Deep-learning model provides better solutions for handling the huge dataset with good accuracy. On the other hand, real time datasets are highly imbalanced with their sample proportions. In this research, GAN based model, a supervised learning method which generates new fake samples that is similar to real samples has been proposed. GAN based adversarial training would address the class imbalance problem in real time datasets. Adversarial samples are combined with legitimate samples and shuffled via proper proportion and given as input to the classifiers. The generated data samples along with the original ones are classified using various machine learning classifiers and their performances have been evaluated. Gradient boosting was found to classify with 98% accuracy when compared to other
2023-07-19
Zuo, Langyi.  2022.  Comparison between the Traditional and Computerized Cognitive Training Programs in Treating Mild Cognitive Impairment. 2022 2nd International Conference on Electronic Information Engineering and Computer Technology (EIECT). :119—124.
MCI patients can be benefited from cognitive training programs to improve their cognitive capabilities or delay the decline of cognition. This paper evaluated three types of commonly seen categories of cognitive training programs (non-computerized / traditional cognitive training (TCT), computerized cognitive training (CCT), and virtual/augmented reality cognitive training (VR/AR CT)) based on six aspects: stimulation strength, user-friendliness, expandability, customizability/personalization, convenience, and motivation/atmosphere. In addition, recent applications of each type of CT were offered. Finally, a conclusion in which no single CT outperformed the others was derived, and the most applicable scenario of each type of CT was also provided.
2023-06-29
Wang, Zhichao.  2022.  Deep Learning Methods for Fake News Detection. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :472–475.

Nowadays, although it is much more convenient to obtain news with social media and various news platforms, the emergence of all kinds of fake news has become a headache and urgent problem that needs to be solved. Currently, the fake news recognition algorithm for fake news mainly uses GCN, including some other niche algorithms such as GRU, CNN, etc. Although all fake news verification algorithms can reach quite a high accuracy with sufficient datasets, there is still room for improvement for unsupervised learning and semi-supervised. This article finds that the accuracy of the GCN method for fake news detection is basically about 85% through comparison with other neural network models, which is satisfactory, and proposes that the current field lacks a unified training dataset, and that in the future fake news detection models should focus more on semi-supervised learning and unsupervised learning.

2023-05-11
Teo, Jia Wei, Gunawan, Sean, Biswas, Partha P., Mashima, Daisuke.  2022.  Evaluating Synthetic Datasets for Training Machine Learning Models to Detect Malicious Commands. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :315–321.
Electrical substations in power grid act as the critical interface points for the transmission and distribution networks. Over the years, digital technology has been integrated into the substations for remote control and automation. As a result, substations are more prone to cyber attacks and exposed to digital vulnerabilities. One of the notable cyber attack vectors is the malicious command injection, which can lead to shutting down of substations and subsequently power outages as demonstrated in Ukraine Power Plant Attack in 2015. Prevailing measures based on cyber rules (e.g., firewalls and intrusion detection systems) are often inadequate to detect advanced and stealthy attacks that use legitimate-looking measurements or control messages to cause physical damage. Additionally, defenses that use physics-based approaches (e.g., power flow simulation, state estimation, etc.) to detect malicious commands suffer from high latency. Machine learning serves as a potential solution in detecting command injection attacks with high accuracy and low latency. However, sufficient datasets are not readily available to train and evaluate the machine learning models. In this paper, focusing on this particular challenge, we discuss various approaches for the generation of synthetic data that can be used to train the machine learning models. Further, we evaluate the models trained with the synthetic data against attack datasets that simulates malicious commands injections with different levels of sophistication. Our findings show that synthetic data generated with some level of power grid domain knowledge helps train robust machine learning models against different types of attacks.
2022-12-01
Ajorpaz, Samira Mirbagher, Moghimi, Daniel, Collins, Jeffrey Neal, Pokam, Gilles, Abu-Ghazaleh, Nael, Tullsen, Dean.  2022.  EVAX: Towards a Practical, Pro-active & Adaptive Architecture for High Performance & Security. 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). :1218—1236.
This paper provides an end-to-end solution to defend against known microarchitectural attacks such as speculative execution attacks, fault-injection attacks, covert and side channel attacks, and unknown or evasive versions of these attacks. Current defenses are attack specific and can have unacceptably high performance overhead. We propose an approach that reduces the overhead of state-of-art defenses by over 95%, by applying defenses only when attacks are detected. Many current proposed mitigations are not practical for deployment; for example, InvisiSpec has 27% overhead and Fencing has 74% overhead while protecting against only Spectre attacks. Other mitigations carry similar performance penalties. We reduce the overhead for InvisiSpec to 1.26% and for Fencing to 3.45% offering performance and security for not only spectre attacks but other known transient attacks as well, including the dangerous class of LVI and Rowhammer attacks, as well as covering a large set of future evasive and zero-day attacks. Critical to our approach is an accurate detector that is not fooled by evasive attacks and that can generalize to novel zero-day attacks. We use a novel Generative framework, Evasion Vaccination (EVAX) for training ML models and engineering new security-centric performance counters. EVAX significantly increases sensitivity to detect and classify attacks in time for mitigation to be deployed with low false positives (4 FPs in every 1M instructions in our experiments). Such performance enables efficient and timely mitigations, enabling the processor to automatically switch between performance and security as needed.
2023-06-29
Jayakody, Nirosh, Mohammad, Azeem, Halgamuge, Malka N..  2022.  Fake News Detection using a Decentralized Deep Learning Model and Federated Learning. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1–6.

Social media has beneficial and detrimental impacts on social life. The vast distribution of false information on social media has become a worldwide threat. As a result, the Fake News Detection System in Social Networks has risen in popularity and is now considered an emerging research area. A centralized training technique makes it difficult to build a generalized model by adapting numerous data sources. In this study, we develop a decentralized Deep Learning model using Federated Learning (FL) for fake news detection. We utilize an ISOT fake news dataset gathered from "Reuters.com" (N = 44,898) to train the deep learning model. The performance of decentralized and centralized models is then assessed using accuracy, precision, recall, and F1-score measures. In addition, performance was measured by varying the number of FL clients. We identify the high accuracy of our proposed decentralized FL technique (accuracy, 99.6%) utilizing fewer communication rounds than in previous studies, even without employing pre-trained word embedding. The highest effects are obtained when we compare our model to three earlier research. Instead of a centralized method for false news detection, the FL technique may be used more efficiently. The use of Blockchain-like technologies can improve the integrity and validity of news sources.

ISSN: 2577-1647

2023-02-17
Chen, Di.  2022.  Practice on the Data Service of University Scientific Research Management Based on Cloud Computing. 2022 World Automation Congress (WAC). :424–428.
With the continuous development of computer technology, the coverage of informatization solutions covers all walks of life and all fields of society. For colleges and universities, teaching and scientific research are the basic tasks of the school. The scientific research ability of the school will affect the level of teachers and the training of students. The establishment of a good scientific research environment has become a more important link in the development of universities. SR(Scientific research) data is a prerequisite for SR activities. High-quality SR management data services are conducive to ensuring the quality and safety of SRdata, and further assisting the smooth development of SR projects. Therefore, this article mainly conducts research and practice on cloud computing-based scientific research management data services in colleges and universities. First, analyze the current situation of SR data management in colleges and universities, and the results show that the popularity of SR data management in domestic universities is much lower than that of universities in Europe and the United States, and the data storage awareness of domestic researchers is relatively weak. Only 46% of schools have developed SR data management services, which is much lower than that of European and American schools. Second, analyze the effect of CC(cloud computing )on the management of SR data in colleges and universities. The results show that 47% of SR believe that CC is beneficial to the management of SR data in colleges and universities to reduce scientific research costs and improve efficiency, the rest believe that CC can speed up data storage and improve security by acting on SR data management in colleges and universities.
ISSN: 2154-4824
2023-04-28
Deng, Zijie, Feng, Guocong, Huang, Qingshui, Zou, Hong, Zhang, Jiafa.  2022.  Research on Enterprise Information Security Risk Assessment System Based on Bayesian Neural Network. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :938–941.
Information security construction is a social issue, and the most urgent task is to do an excellent job in information risk assessment. The bayesian neural network currently plays a vital role in enterprise information security risk assessment, which overcomes the subjective defects of traditional assessment results and operates efficiently. The risk quantification method based on fuzzy theory and Bayesian regularization BP neural network mainly uses fuzzy theory to process the original data and uses the processed data as the input value of the neural network, which can effectively reduce the ambiguity of language description. At the same time, special neural network training is carried out for the confusion that the neural network is easy to fall into the optimal local problem. Finally, the risk is verified and quantified through experimental simulation. This paper mainly discusses the problem of enterprise information security risk assessment based on a Bayesian neural network, hoping to provide strong technical support for enterprises and organizations to carry out risk rectification plans. Therefore, the above method provides a new information security risk assessment idea.
2023-03-31
You, Jinliang, Zhang, Di, Gong, Qingwu, Zhu, Jiran, Tang, Haiguo, Deng, Wei, Kang, Tong.  2022.  Fault phase selection method of distribution network based on wavelet singular entropy and DBN. 2022 China International Conference on Electricity Distribution (CICED). :1742–1747.
The selection of distribution network faults is of great significance to accurately identify the fault location, quickly restore power and improve the reliability of power supply. This paper mainly studies the fault phase selection method of distribution network based on wavelet singular entropy and deep belief network (DBN). Firstly, the basic principles of wavelet singular entropy and DBN are analyzed, and on this basis, the DBN model of distribution network fault phase selection is proposed. Firstly, the transient fault current data of the distribution network is processed to obtain the wavelet singular entropy of the three phases, which is used as the input of the fault phase selection model; then the DBN network is improved, and an artificial neural network (ANN) is introduced to make it a fault Select the phase classifier, and specify the output label; finally, use Simulink to build a simulation model of the IEEE33 node distribution network system, obtain a large amount of data of various fault types, generate a training sample library and a test sample library, and analyze the neural network. The adjustment of the structure and the training of the parameters complete the construction of the DBN model for the fault phase selection of the distribution network.
ISSN: 2161-749X
2023-01-05
Khodaskar, Manish, Medhane, Darshan, Ingle, Rajesh, Buchade, Amar, Khodaskar, Anuja.  2022.  Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
2022-12-09
Al-Falouji, Ghassan, Gruhl, Christian, Neumann, Torben, Tomforde, Sven.  2022.  A Heuristic for an Online Applicability of Anomaly Detection Techniques. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :107—112.
OHODIN is an online extension for data streams of the kNN-based ODIN anomaly detection approach. It provides a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. However, it is limited in terms of the underlying detection method. In this article, we present an extension of the OHODIN to further detection techniques to reinforce OHODIN capability of online data streams anomaly detection. We introduce the algorithm modifications and an experimental evaluation with competing state-of-the-art anomaly detection approaches.
2022-02-25
Abdelnabi, Sahar, Fritz, Mario.  2021.  Adversarial Watermarking Transformer: Towards Tracing Text Provenance with Data Hiding. 2021 IEEE Symposium on Security and Privacy (SP). :121–140.
Recent advances in natural language generation have introduced powerful language models with high-quality output text. However, this raises concerns about the potential misuse of such models for malicious purposes. In this paper, we study natural language watermarking as a defense to help better mark and trace the provenance of text. We introduce the Adversarial Watermarking Transformer (AWT) with a jointly trained encoder-decoder and adversarial training that, given an input text and a binary message, generates an output text that is unobtrusively encoded with the given message. We further study different training and inference strategies to achieve minimal changes to the semantics and correctness of the input text.AWT is the first end-to-end model to hide data in text by automatically learning -without ground truth- word substitutions along with their locations in order to encode the message. We empirically show that our model is effective in largely preserving text utility and decoding the watermark while hiding its presence against adversaries. Additionally, we demonstrate that our method is robust against a range of attacks.