Biblio
Privacy policies are used to communicate company data practices to consumers and must be accurate and comprehensive. Each policy author is free to use their own nomenclature when describing data practices, which leads to different ways in which similar information types are described across policies. A formal ontology can help policy authors, users and regulators consistently check how data practice descriptions relate to other interpretations of information types. In this paper, we describe an empirical method for manually constructing an information type ontology from privacy policies. The method consists of seven heuristics that explain how to infer hypernym, meronym and synonym relationships from information type phrases, which we discovered using grounded analysis of five privacy policies. The method was evaluated on 50 mobile privacy policies which produced an ontology consisting of 355 unique information type names. Based on the manual results, we describe an automated technique consisting of 14 reusable semantic rules to extract hypernymy, meronymy, and synonymy relations from information type phrases. The technique was evaluated on the manually constructed ontology to yield .95 precision and .51 recall.
Container-based network emulation offers high fidelity and a scalable testing environment to bridge the gap between research ideas and real-world network applications. However, containers take their notions of time from the physical system clock, and thus the time-stamped events from different containers are multiplexed to reflect the scheduling serialization by the Linux operating system. Conjoining the emulator and other simulators is also challenging due to the difficulties of synchronizing the virtual simulation clock with the physical system clock. Virtual time systems for network emulation shed light on both issues. In this paper, we develop a lightweight container-based virtual time system in Linux Kernel. We use time dilation to trade time with system resources by precisely scaling the time of interactions between containers and physical devices. We develop a time freezer to enable the precise pause and resume of an emulation experiment, which offers the virtual time support to interface with simulators for close synchronization. We integrate the virtual time system into a software-defined networking emulator, Mininet, and evaluate the system accuracy, scalability, and overhead. Finally, we use the virtual-time-enabled emulation testbed to conduct a case study of equal-cost multi-path routing protocol analysis in a data center network.
Detecting lock-related defects has long been a hot research topic in software engineering. Many efforts have been spent on detecting such deadlocks in concurrent software systems. However, latent locks may be hidden in application programming interface (API) methods whose source code may not be accessible to developers. Many APIs have latent locks. For example, our study has shown that J2SE alone can have 2,000+ latent locks. As latent locks are less known by developers, they can cause deadlocks that are hard to perceive or diagnose. Meanwhile, the state-of-the-art tools mostly handle API methods as black boxes, and cannot detect deadlocks that involve such latent locks. In this paper, we propose a novel black-box testing approach, called LockPeeker, that reveals latent locks in Java APIs. The essential idea of LockPeeker is that latent locks of a given API method can be revealed by testing the method and summarizing the locking effects during testing execution. We have evaluated LockPeeker on ten real-world Java projects. Our evaluation results show that (1) LockPeeker detects 74.9% of latent locks in API methods, and (2) it enables state-of-the-art tools to detect deadlocks that otherwise cannot be detected.
Convolution serves as the basic computational primitive for various associative computing tasks ranging from edge detection to image matching. CMOS implementation of such computations entails significant bottlenecks in area and energy consumption due to the large number of multiplication and addition operations involved. In this paper, we propose an ultra-low power and compact hybrid spintronic-CMOS design for the convolution computing unit. Low-voltage operation of domain-wall motion based magneto-metallic "Spin-Memristor"s interfaced with CMOS circuits is able to perform the convolution operation with reasonable accuracy. Simulation results of Gabor filtering for edge detection reveal \textasciitilde 2.5× lower energy consumption compared to a baseline 45nm-CMOS implementation.
3D die stacking and 2.5D interposer design are promising technologies to improve integration density, performance and cost. Current approaches face serious issues in dealing with emerging security challenges such as side channel attacks, hardware trojans, secure IC manufacturing and IP piracy. By utilizing intrinsic characteristics of 2.5D and 3D technologies, we propose novel opportunities in designing secure systems. We present: (i) a 3D architecture for shielding side-channel information; (ii) split fabrication using active interposers; (iii) circuit camouflage on monolithic 3D IC, and (iv) 3D IC-based security processing-in-memory (PIM). Advantages and challenges of these designs are discussed, showing that the new designs can improve existing countermeasures against security threats and further provide new security features.
3D die stacking and 2.5D interposer design are promising technologies to improve integration density, performance and cost. Current approaches face serious issues in dealing with emerging security challenges such as side channel attacks, hardware trojans, secure IC manufacturing and IP piracy. By utilizing intrinsic characteristics of 2.5D and 3D technologies, we propose novel opportunities in designing secure systems. We present: (i) a 3D architecture for shielding side-channel information; (ii) split fabrication using active interposers; (iii) circuit camouflage on monolithic 3D IC, and (iv) 3D IC-based security processing-in-memory (PIM). Advantages and challenges of these designs are discussed, showing that the new designs can improve existing countermeasures against security threats and further provide new security features.
Reputation systems in current electronic marketplaces can easily be manipulated by malicious sellers in order to appear more reputable than appropriate. We conducted a controlled experiment with 40 UK and 41 German participants on their ability to detect malicious behavior by means of an eBay-like feedback profile versus a novel interface involving an interactive visualization of reputation data. The results show that participants using the new interface could better detect and understand malicious behavior in three out of four attacks (the overall detection accuracy 77% in the new vs. 56% in the old interface). Moreover, with the new interface, only 7% of the users decided to buy from the malicious seller (the options being to buy from one of the available sellers or to abstain from buying), as opposed to 30% in the old interface condition.
Recently, proactive systems such as Google Now and Microsoft Cortana have become increasingly popular in reforming the way users access information on mobile devices. In these systems, relevant content is presented to users based on their context without a query in the form of information cards that do not require a click to satisfy the users. As a result, prior approaches based on clicks cannot provide reliable measurements of user satisfaction with such systems. It is also unclear how much of the previous findings regarding good abandonment with reactive Web searches can be applied to these proactive systems due to the intrinsic difference in user intent, the greater variety of content types and their presentations. In this paper, we present the first large-scale analysis of viewing behavior based on the viewport (the visible fraction of a Web page) of the mobile devices, towards measuring user satisfaction with the information cards of the mobile proactive systems. In particular, we identified and analyzed a variety of factors that may influence the viewing behavior, including biases from ranking positions, the types and attributes of the information cards, and the touch interactions with the mobile devices. We show that by modeling the various factors we can better measure user satisfaction with the mobile proactive systems, enabling stronger statistical power in large-scale online A/B testing.
Poisoning attack in which an adversary misleads the learning process by manipulating its training set significantly affect the performance of classifiers in security applications. This paper proposed a robust learning method which reduces the influences of attack samples on learning. The sensitivity, defined as the fluctuation of the output with small perturbation of the input, in Localized Generalization Error Model (L-GEM) is measured for each training sample. The classifier's output on attack samples may be sensitive and inaccurate since these samples are different from other untainted samples. An import score is assigned to each sample according to its localized generalization error bound. The classifier is trained using a new training set obtained by resampling the samples according to their importance scores. RBFNN is applied as the classifier in experimental evaluation. The proposed model outperforms than the traditional one under the well-known label flip poisoning attacks including nearest-first and farthest-first flips attack.
Today, by widely spread of information technology (IT) usage, E-commerce security and its related legislations are very critical issue in information technology and court law. There is a consensus that security matters are the significant foundation of e-commerce, electronic consumers, and firms' privacy. While e-commerce networks need a policy for security privacy, they should be prepared for a simple consumer friendly infrastructure. Hence it is necessary to review the theoretical models for revision. In This theory review, we embody a number of former articles that cover security of e-commerce and legislation ambit at the individual level by assessing five criteria. Whether data of articles provide an effective strategy for secure-protection challenges in e-commerce and e-consumers. Whether provisions clearly remedy precedents or they need to flourish? This paper focuses on analyzing the former discussion regarding e-commerce security and existence legislation toward cyber-crime activity of e-commerce the article also purports recommendation for subsequent research which is indicate that through secure factors of e-commerce we are able to fill the vacuum of its legislation.
Interface-confinement is a common mechanism that secures untrusted code by executing it inside a sandbox. The sandbox limits (confines) the code's interaction with key system resources to a restricted set of interfaces. This practice is seen in web browsers, hypervisors, and other security-critical systems. Motivated by these systems, we present a program logic, called System M, for modeling and proving safety properties of systems that execute adversary-supplied code via interface-confinement. In addition to using computation types to specify effects of computations, System M includes a novel invariant type to specify the properties of interface-confined code. The interpretation of invariant type includes terms whose effects satisfy an invariant. We construct a step-indexed model built over traces and prove the soundness of System M relative to the model. System M is the first program logic that allows proofs of safety for programs that execute adversary-supplied code without forcing the adversarial code to be available for deep static analysis. System M can be used to model and verify protocols as well as system designs. We demonstrate the reasoning principles of System M by verifying the state integrity property of the design of Memoir, a previously proposed trusted computing system.
Interface-confinement is a common mechanism that secures untrusted code by executing it inside a sandbox. The sandbox limits (confines) the code's interaction with key system resources to a restricted set of interfaces. This practice is seen in web browsers, hypervisors, and other security-critical systems. Motivated by these systems, we present a program logic, called System M, for modeling and proving safety properties of systems that execute adversary-supplied code via interface-confinement. In addition to using computation types to specify effects of computations, System M includes a novel invariant type to specify the properties of interface-confined code. The interpretation of invariant type includes terms whose effects satisfy an invariant. We construct a step-indexed model built over traces and prove the soundness of System M relative to the model. System M is the first program logic that allows proofs of safety for programs that execute adversary-supplied code without forcing the adversarial code to be available for deep static analysis. System M can be used to model and verify protocols as well as system designs. We demonstrate the reasoning principles of System M by verifying the state integrity property of the design of Memoir, a previously proposed trusted computing system.
In this work we are interested in the stability and L2-gain of hybrid systems with linear flow dynamics, periodic time-triggered jumps and nonlinear possibly set-valued jump maps. This class of hybrid systems includes various interesting applications such as periodic event-triggered control. In this paper we also show that sampled-data systems with arbitrarily switching controllers can be captured in this framework by requiring the jump map to be set-valued. We provide novel conditions for the internal stability and L2-gain analysis of these systems adopting a lifting-based approach. In particular, we establish that the internal stability and contractivity in terms of an L2-gain smaller than 1 are equivalent to the internal stability and contractivity of a particular discretetime set-valued nonlinear system. Despite earlier works in this direction, these novel characterisations are the first necessary and sufficient conditions for the stability and the contractivity of this class of hybrid systems. The results are illustrated through multiple new examples.
In this paper a joint algorithm was designed to detect a variety of unauthorized access risks in multilevel hybrid cloud. First of all, the access history is recorded among different virtual machines in multilevel hybrid cloud using the global flow diagram. Then, the global flow graph is taken as auxiliary decision-making basis to design legitimacy detection algorithm based data access and is represented by formal representation, Finally the implement process was specified, and the algorithm can effectively detect operating against regulations such as simple unauthorized level across, beyond indirect unauthorized and other irregularities.
The security of cyber-physical systems is of paramount importance because of their pervasiveness in the critical infrastructure. Protecting cyber-physical systems greatly depends on a deep understanding of the possible attacks and their properties. The prerequisite for quantitative and qualitative analyses of attacks is a knowledge base containing attack descriptions. The structure of the attack descriptions is the indispensable foundation of the knowledge base.
This paper introduces the Cyber-Physical Attack Description Language (CP-ADL), which lays a cornerstone for the structured description of attacks on cyber-physical systems. The core of the language is a taxonomy of attacks on cyber-physical systems. The taxonomy specifies the semantically distinct aspects of attacks on cyber-physical systems that should be described. CP-ADL extends the taxonomy with the means to describe relationships between semantically distinct aspects, despite the complex relationships that exist for attacks on cyber-physical systems. The language is capable of expressing relationships between attack descriptions, including the links between attack steps and the folding of attack details.