Biblio

Found 473 results

Filters: First Letter Of Title is L  [Clear All Filters]
2017-05-17
Huang, Jheng-Jia, Juang, Wen-Shenq, Fan, Chun-I, Tseng, Yi-Fan, Kikuchi, Hiroaki.  2016.  Lightweight Authentication Scheme with Dynamic Group Members in IoT Environments. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :88–93.

In IoT environments, the user may have many devices to connect each other and share the data. Also, the device will not have the powerful computation and storage ability. Many studies have focused on the lightweight authentication between the cloud server and the client in this environment. They can use the cloud server to help sensors or proxies to finish the authentication. But in the client side, how to create the group session key without the cloud capability is the most important issue in IoT environments. The most popular application network of IoT environments is the wireless body area network (WBAN). In WBAN, the proxy usually needs to control and monitor user's health data transmitted from the sensors. In this situation, the group authentication and group session key generation is needed. In this paper, in order to provide an efficient and robust group authentication and group session key generation in the client side of IoT environments, we propose a lightweight authentication scheme with dynamic group members in IoT environments. Our proposed scheme can satisfy the properties including the flexible generation of shared group keys, the dynamic participation, the active revocation, the low communication and computation cost, and no time synchronization problem. Also our scheme can achieve the security requirements including the mutual authentication, the group session key agreement, and prevent all various well-known attacks.

2017-04-24
Xie, Xiongwei, Wang, Weichao.  2016.  Lightweight Examination of DLL Environments in Virtual Machines to Detect Malware. Proceedings of the 4th ACM International Workshop on Security in Cloud Computing. :10–16.

Since it becomes increasingly difficult to trick end users to install and run executable files from unknown sources, attackers refer to stealthy ways such as manipulation of DLL (Dynamic Link Library) files to compromise user computers. In this paper, we propose to develop mechanisms that allow the hypervisor to conduct lightweight examination of DLL files and their running environment in guest virtual machines. Different from the approaches that focus on static analysis of the DLL API calling graphs, our mechanisms conduct continuous examination of their running states. In this way, malicious manipulations to DLL files that happen after they are loaded into memory can also be detected. In order to maintain non-intrusive monitoring and reduce the impacts on VM performance, we avoid examinations of the complete DLL file contents but focus on the parameters such as the relative virtual addresses (RVA) of the functions. We have implemented our approach in Xen and conducted experiments with more than 100 malware of different types. The experiment results show that our approach can effectively detect the malware with very low increases in overhead at guest VMs.

2017-10-18
Luger, Ewa, Sellen, Abigail.  2016.  "Like Having a Really Bad PA": The Gulf Between User Expectation and Experience of Conversational Agents. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. :5286–5297.

The past four years have seen the rise of conversational agents (CAs) in everyday life. Apple, Microsoft, Amazon, Google and Facebook have all embedded proprietary CAs within their software and, increasingly, conversation is becoming a key mode of human-computer interaction. Whilst we have long been familiar with the notion of computers that speak, the investigative concern within HCI has been upon multimodality rather than dialogue alone, and there is no sense of how such interfaces are used in everyday life. This paper reports the findings of interviews with 14 users of CAs in an effort to understand the current interactional factors affecting everyday use. We find user expectations dramatically out of step with the operation of the systems, particularly in terms of known machine intelligence, system capability and goals. Using Norman's 'gulfs of execution and evaluation' [30] we consider the implications of these findings for the design of future systems.

2017-04-03
Urbina, David I., Giraldo, Jairo A., Cardenas, Alvaro A., Tippenhauer, Nils Ole, Valente, Junia, Faisal, Mustafa, Ruths, Justin, Candell, Richard, Sandberg, Henrik.  2016.  Limiting the Impact of Stealthy Attacks on Industrial Control Systems. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1092–1105.

While attacks on information systems have for most practical purposes binary outcomes (information was manipulated/eavesdropped, or not), attacks manipulating the sensor or control signals of Industrial Control Systems (ICS) can be tuned by the attacker to cause a continuous spectrum in damages. Attackers that want to remain undetected can attempt to hide their manipulation of the system by following closely the expected behavior of the system, while injecting just enough false information at each time step to achieve their goals. In this work, we study if attack-detection can limit the impact of such stealthy attacks. We start with a comprehensive review of related work on attack detection schemes in the security and control systems community. We then show that many of those works use detection schemes that are not limiting the impact of stealthy attacks. We propose a new metric to measure the impact of stealthy attacks and how they relate to our selection on an upper bound on false alarms. We finally show that the impact of such attacks can be mitigated in several cases by the proper combination and configuration of detection schemes. We demonstrate the effectiveness of our algorithms through simulations and experiments using real ICS testbeds and real ICS systems.

2018-05-11
2017-08-02
Wang, Min, Zhou, Wengang, Tian, Qi, Zha, Zhengjun, Li, Houqiang.  2016.  Linear Distance Preserving Pseudo-Supervised and Unsupervised Hashing. Proceedings of the 2016 ACM on Multimedia Conference. :1257–1266.

With the advantage in compact representation and efficient comparison, binary hashing has been extensively investigated for approximate nearest neighbor search. In this paper, we propose a novel and general hashing framework, which simultaneously considers a new linear pair-wise distance preserving objective and point-wise constraint. The direct distance preserving objective aims to keep the linear relationships between the Euclidean distance and the Hamming distance of data points. Based on different point-wise constraints, we propose two methods to instantiate this framework. The first one is a pseudo-supervised hashing method, which uses existing unsupervised hashing methods to generate binary codes as pseudo-supervised information. The second one is an unsupervised hashing method, in which quantization loss is considered. We validate our framework on two large-scale datasets. The experiments demonstrate that our pseudo-supervised method achieves consistent improvement for the state-of-the-art unsupervised hashing methods, while our unsupervised method outperforms the state-of-the-art methods.

2017-03-07
Schild, Christopher-J., Schultz, Simone.  2016.  Linking Deutsche Bundesbank Company Data Using Machine-Learning-Based Classification: Extended Abstract. Proceedings of the Second International Workshop on Data Science for Macro-Modeling. :10:1–10:3.

We present a process of linking various Deutsche Bundesbank datasources on companies based on a semi-automatic classification. The linkage process involves data cleaning and harmonization, blocking, construction of comparison features, as well as training and testing a statistical classification model on a "ground-truth" subset of known matches and non-matches. The evaluation of our method shows that the process limits the need for manual classifications to a small percentage of ambiguously classified match candidates.

2018-05-10
2018-05-27
Wang, Wei, Yu, Nanpeng.  2016.  LMP decomposition with three-phase DCOPF for distribution system. Innovative Smart Grid Technologies-Asia (ISGT-Asia), 2016 IEEE. :1–8.
2017-10-10
Huang, Wei, Huang, Zhen, Miyani, Dhaval, Lie, David.  2016.  LMP: Light-weighted Memory Protection with Hardware Assistance. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :460–470.

Despite a long history and numerous proposed defenses, memory corruption attacks are still viable. A secure and low-overhead defense against return-oriented programming (ROP) continues to elude the security community. Currently proposed solutions still must choose between either not fully protecting critical data and relying instead on information hiding, or using incomplete, coarse-grain checking that can be circumvented by a suitably skilled attacker. In this paper, we present a light-weighted memory protection approach (LMP) that uses Intel's MPX hardware extensions to provide complete, fast ROP protection without having to rely in information hiding. We demonstrate a prototype that defeats ROP attacks while incurring an average runtime overhead of 3.9%.

2017-05-30
Chatzopoulos, Dimitris, Gujar, Sujit, Faltings, Boi, Hui, Pan.  2016.  LocalCoin: An Ad-hoc Payment Scheme for Areas with High Connectivity: Poster. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :365–366.

The popularity of digital currencies, especially cryptocurrencies, has been continuously growing since the appearance of Bitcoin. Bitcoin is a peer-to-peer (P2P) cryptocurrency protocol enabling transactions between individuals without the need of a trusted authority. Its network is formed from resources contributed by individuals known as miners. Users of Bitcoin currency create transactions that are stored in a specialised data structure called a block chain. Bitcoin's security lies in a proof-of-work scheme, which requires high computational resources at the miners. These miners have to be synchronised with any update in the network, which produces high data traffic rates. Despite advances in mobile technology, no cryptocurrencies have been proposed for mobile devices. This is largely due to the lower processing capabilities of mobile devices when compared with conventional computers and the poorer Internet connectivity to that of the wired networking. In this work, we propose LocalCoin, an alternative cryptocurrency that requires minimal computational resources, produces low data traffic and works with off-the-shelf mobile devices. LocalCoin replaces the computational hardness that is at the root of Bitcoin's security with the social hardness of ensuring that all witnesses to a transaction are colluders. It is based on opportunistic networking rather than relying on infrastructure and incorporates characteristics of mobile networks such as users' locations and their coverage radius in order to employ an alternative proof-of-work scheme. Localcoin features (i) a lightweight proof-of-work scheme and (ii) a distributed block chain.

2017-08-22
Hintze, Daniel, Koch, Eckhard, Scholz, Sebastian, Mayrhofer, René.  2016.  Location-based Risk Assessment for Mobile Authentication. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. :85–88.

Mobile devices offer access to our digital lives and thus need to be protected against the risk of unauthorized physical access by applying strong authentication, which in turn adversely affects usability. The actual risk, however, depends on dynamic factors like day and time. In this paper we discuss the idea of using location-based risk assessment in combination with multi-modal biometrics to adjust the level of authentication necessary to the situational risk of unauthorized access.

2017-05-19
Joy, Joshua, Le, Minh, Gerla, Mario.  2016.  LocationSafe: Granular Location Privacy for IoT Devices. Proceedings of the Eighth Wireless of the Students, by the Students, and for the Students Workshop. :39–41.

Today, mobile data owners lack consent and control over the release and utilization of their location data. Third party applications continuously process and access location data without data owners granular control and without knowledge of how location data is being used. The proliferation of GPS enabled IoT devices will lead to larger scale abuses of trust. In this paper we present the first design and implementation of a privacy module built into the GPSD daemon. The GPSD daemon is a low-level GPS interface that runs on GPS enabled devices. The integration of the privacy module ensures that data owners have granular control over the release of their GPS location. We describe the design of our privacy module integration into the GPSD daemon.

2017-05-22
Bloom, Gedare, Parmer, Gabriel, Simha, Rahul.  2016.  LockDown: An Operating System for Achieving Service Continuity by Quarantining Principals. Proceedings of the 9th European Workshop on System Security. :7:1–7:6.

This paper introduces quarantine, a new security primitive for an operating system to use in order to protect information and isolate malicious behavior. Quarantine's core feature is the ability to fork a protection domain on-the-fly to isolate a specific principal's execution of untrusted code without risk of a compromise spreading. Forking enables the OS to ensure service continuity by permitting even high-risk operations to proceed, albeit subject to greater scrutiny and constraints. Quarantine even partitions executing threads that share resources into isolated protection domains. We discuss the design and implementation of quarantine within the LockDown OS, a security-focused evolution of the Composite component-based microkernel OS. Initial performance results for quarantine show that about 98% of the overhead comes from the cost of copying memory to the new protection domain.

2018-05-15
2017-09-19
Gaebel, Ethan, Zhang, Ning, Lou, Wenjing, Hou, Y. Thomas.  2016.  Looks Good To Me: Authentication for Augmented Reality. Proceedings of the 6th International Workshop on Trustworthy Embedded Devices. :57–67.

Augmented reality is poised to become a dominant computing paradigm over the next decade. With promises of three-dimensional graphics and interactive interfaces, augmented reality experiences will rival the very best science fiction novels. This breakthrough also brings in unique challenges on how users can authenticate one another to share rich content between augmented reality headsets. Traditional authentication protocols fall short when there is no common central entity or when access to the central authentication server is not available or desirable. Looks Good To Me (LGTM) is an authentication protocol that leverages the unique hardware and context provided with augmented reality headsets to bring innate human trust mechanisms into the digital world to solve authentication in a usable and secure way. LGTM works over point to point wireless communication so users can authenticate one another in a variety of circumstances and is designed with usability at its core, requiring users to perform only two actions: one to initiate and one to confirm. Users intuitively authenticate one another, using seemingly only each other's faces, but under the hood LGTM uses a combination of facial recognition and wireless localization to bootstrap trust from a wireless signal, to a location, to a face, for secure and usable authentication.

2017-05-18
Hsu, Daniel, Sabato, Sivan.  2016.  Loss Minimization and Parameter Estimation with Heavy Tails. J. Mach. Learn. Res.. 17:543–582.

This work studies applications and generalizations of a simple estimation technique that provides exponential concentration under heavy-tailed distributions, assuming only bounded low-order moments. We show that the technique can be used for approximate minimization of smooth and strongly convex losses, and specifically for least squares linear regression. For instance, our d-dimensional estimator requires just O(d log(1/δ)) random samples to obtain a constant factor approximation to the optimal least squares loss with probability 1-δ, without requiring the covariates or noise to be bounded or subgaussian. We provide further applications to sparse linear regression and low-rank covariance matrix estimation with similar allowances on the noise and covariate distributions. The core technique is a generalization of the median-of-means estimator to arbitrary metric spaces.

2017-05-19
He, Zhezhi, Fan, Deliang.  2016.  A Low Power Current-Mode Flash ADC with Spin Hall Effect Based Multi-Threshold Comparator. Proceedings of the 2016 International Symposium on Low Power Electronics and Design. :314–319.

Current-mode Analog-to-Digital Converter (ADC) has drawn many attentions due to its high operating speed, power and ground noise immunity, and etc. However, 2n – 1 comparators are required in traditional n-bit current-mode ADC design, leading to inevitable high power consumption and large chip area. In this work, we propose a low power and compact current mode Multi-Threshold Comparator (MTC) based on giant Spin Hall Effect (SHE). The two threshold currents of the proposed SHE-MTC are 200μA and 250μA with 1ns switching time, respectively. The proposed current-mode hybrid spin-CMOS flash ADC based on SHE-MTC reduces the number of comparators almost by half (2n-1), thus correspondingly reducing the required current mirror branches, total power consumption and chip area. Moreover, due to the non-volatility of SHE-MTC, the front-end analog circuits can be switched off when it is not required to further increase power efficiency. The device dynamics of SHE-MTC is simulated using a numerical device model based on Landau-Lifshitz-Gilbert (LLG) equation with Spin-Transfer Torque (STT) term and SHE term. The device-circuit co-simulation in SPICE (45nm CMOS technology) have shown that the average power dissipation of proposed ADC is 1.9mW, operating at 500MS/s with 1.2 V power supply. The INL and DNL are in the range of 0.23LSB and 0.32LSB, respectively.

2017-04-24
Newmarch, Jan.  2016.  Low Power Wireless: 6LoWPAN, IEEE802.15.4 and the Raspberry Pi. Linux J.. 2016

IoT applications will rely on the connections between sensors and actuators and the internet. This will likely be wireless, and it will have to be low power.

Newmarch, Jan.  2016.  Low Power Wireless: Routing to the Internet. Linux J.. 2016

How to get two Raspberry Pis to communicate over a 6LoWPAN network.

2018-05-14
2017-05-16
Ren, Kun, Diamond, Thaddeus, Abadi, Daniel J., Thomson, Alexander.  2016.  Low-Overhead Asynchronous Checkpointing in Main-Memory Database Systems. Proceedings of the 2016 International Conference on Management of Data. :1539–1551.

As it becomes increasingly common for transaction processing systems to operate on datasets that fit within the main memory of a single machine or a cluster of commodity machines, traditional mechanisms for guaranteeing transaction durability–-which typically involve synchronous log flushes–-incur increasingly unappealing costs to otherwise lightweight transactions. Many applications have turned to periodically checkpointing full database state. However, existing checkpointing methods–-even those which avoid freezing the storage layer–-often come with significant costs to operation throughput, end-to-end latency, and total memory usage. This paper presents Checkpointing Asynchronously using Logical Consistency (CALC), a lightweight, asynchronous technique for capturing database snapshots that does not require a physical point of consistency to create a checkpoint, and avoids conspicuous latency spikes incurred by other database snapshotting schemes. Our experiments show that CALC can capture frequent checkpoints across a variety of transactional workloads with extremely small cost to transactional throughput and low additional memory usage compared to other state-of-the-art checkpointing systems.

2017-09-05
Page, Adam, Attaran, Nasrin, Shea, Colin, Homayoun, Houman, Mohsenin, Tinoosh.  2016.  Low-Power Manycore Accelerator for Personalized Biomedical Applications. Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. :63–68.

Wearable personal health monitoring systems can offer a cost effective solution for human healthcare. These systems must provide both highly accurate, secured and quick processing and delivery of vast amount of data. In addition, wearable biomedical devices are used in inpatient, outpatient, and at home e-Patient care that must constantly monitor the patient's biomedical and physiological signals 24/7. These biomedical applications require sampling and processing multiple streams of physiological signals with strict power and area footprint. The processing typically consists of feature extraction, data fusion, and classification stages that require a large number of digital signal processing and machine learning kernels. In response to these requirements, in this paper, a low-power, domain-specific many-core accelerator named Power Efficient Nano Clusters (PENC) is proposed to map and execute the kernels of these applications. Experimental results show that the manycore is able to reduce energy consumption by up to 80% and 14% for DSP and machine learning kernels, respectively, when optimally parallelized. The performance of the proposed PENC manycore when acting as a coprocessor to an Intel Atom processor is compared with existing commercial off-the-shelf embedded processing platforms including Intel Atom, Xilinx Artix-7 FPGA, and NVIDIA TK1 ARM-A15 with GPU SoC. The results show that the PENC manycore architecture reduces the energy by as much as 10X while outperforming all off-the-shelf embedded processing platforms across all studied machine learning classifiers.

2017-09-26
Liao, Xiaojing, Alrwais, Sumayah, Yuan, Kan, Xing, Luyi, Wang, XiaoFeng, Hao, Shuang, Beyah, Raheem.  2016.  Lurking Malice in the Cloud: Understanding and Detecting Cloud Repository As a Malicious Service. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1541–1552.

The popularity of cloud hosting services also brings in new security challenges: it has been reported that these services are increasingly utilized by miscreants for their malicious online activities. Mitigating this emerging threat, posed by such "bad repositories" (simply Bar), is challenging due to the different hosting strategy to traditional hosting service, the lack of direct observations of the repositories by those outside the cloud, the reluctance of the cloud provider to scan its customers' repositories without their consent, and the unique evasion strategies employed by the adversary. In this paper, we took the first step toward understanding and detecting this emerging threat. Using a small set of "seeds" (i.e., confirmed Bars), we identified a set of collective features from the websites they serve (e.g., attempts to hide Bars), which uniquely characterize the Bars. These features were utilized to build a scanner that detected over 600 Bars on leading cloud platforms like Amazon, Google, and 150K sites, including popular ones like groupon.com, using them. Highlights of our study include the pivotal roles played by these repositories on malicious infrastructures and other important discoveries include how the adversary exploited legitimate cloud repositories and why the adversary uses Bars in the first place that has never been reported. These findings bring such malicious services to the spotlight and contribute to a better understanding and ultimately eliminating this new threat.

2017-09-19
Holmes, Ashton, Desai, Sunny, Nahapetian, Ani.  2016.  LuxLeak: Capturing Computing Activity Using Smart Device Ambient Light Sensors. Proceedings of the 2Nd Workshop on Experiences in the Design and Implementation of Smart Objects. :47–52.

In this paper, we consider side-channel mechanisms, specifically using smart device ambient light sensors, to capture information about user computing activity. We distinguish keyboard keystrokes using only the ambient light sensor readings from a smart watch worn on the user's non-dominant hand. Additionally, we investigate the feasibility of capturing screen emanations for determining user browser usage patterns. The experimental results expose privacy and security risks, as well as the potential for new mobile user interfaces and applications.