Biblio

Found 473 results

Filters: First Letter Of Title is L  [Clear All Filters]
2018-11-28
Li, Bo, Roundy, Kevin, Gates, Chris, Vorobeychik, Yevgeniy.  2017.  Large-Scale Identification of Malicious Singleton Files. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :227–238.

We study a dataset of billions of program binary files that appeared on 100 million computers over the course of 12 months, discovering that 94% of these files were present on a single machine. Though malware polymorphism is one cause for the large number of singleton files, additional factors also contribute to polymorphism, given that the ratio of benign to malicious singleton files is 80:1. The huge number of benign singletons makes it challenging to reliably identify the minority of malicious singletons. We present a large-scale study of the properties, characteristics, and distribution of benign and malicious singleton files. We leverage the insights from this study to build a classifier based purely on static features to identify 92% of the remaining malicious singletons at a 1.4% percent false positive rate, despite heavy use of obfuscation and packing techniques by most malicious singleton files that we make no attempt to de-obfuscate. Finally, we demonstrate robustness of our classifier to important classes of automated evasion attacks.

2018-11-19
Zhu, Yi, Liu, Sen, Newsam, Shawn.  2017.  Large-Scale Mapping of Human Activity Using Geo-Tagged Videos. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. :68:1–68:4.

This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they occur in streaming video or for reducing latency in analyzing already captured video. This is, in turn, important for using video in smart-city applications. We perform a series of experiments to show our approach is able to map activities both spatially and temporally.

2018-05-24
Fabian, Benjamin, Ermakova, Tatiana, Lentz, Tino.  2017.  Large-Scale Readability Analysis of Privacy Policies. Proceedings of the International Conference on Web Intelligence. :18–25.

Online privacy policies notify users of a Website how their personal information is collected, processed and stored. Against the background of rising privacy concerns, privacy policies seem to represent an influential instrument for increasing customer trust and loyalty. However, in practice, consumers seem to actually read privacy policies only in rare cases, possibly reflecting the common assumption stating that policies are hard to comprehend. By designing and implementing an automated extraction and readability analysis toolset that embodies a diversity of established readability measures, we present the first large-scale study that provides current empirical evidence on the readability of nearly 50,000 privacy policies of popular English-speaking Websites. The results empirically confirm that on average, current privacy policies are still hard to read. Furthermore, this study presents new theoretical insights for readability research, in particular, to what extent practical readability measures are correlated. Specifically, it shows the redundancy of several well-established readability metrics such as SMOG, RIX, LIX, GFI, FKG, ARI, and FRES, thus easing future choice making processes and comparisons between readability studies, as well as calling for research towards a readability measures framework. Moreover, a more sophisticated privacy policy extractor and analyzer as well as a solid policy text corpus for further research are provided.

2018-02-27
Liu, C., Singhal, A., Wijesekera, D..  2017.  A Layered Graphical Model for Mission Attack Impact Analysis. 2017 IEEE Conference on Communications and Network Security (CNS). :602–609.

Business or military missions are supported by hardware and software systems. Unanticipated cyber activities occurring in supporting systems can impact such missions. In order to quantify such impact, we describe a layered graphical model as an extension of forensic investigation. Our model has three layers: the upper layer models operational tasks that constitute the mission and their inter-dependencies. The middle layer reconstructs attack scenarios from available evidence to reconstruct their inter-relationships. In cases where not all evidence is available, the lower level reconstructs potentially missing attack steps. Using the three levels of graphs constructed in these steps, we present a method to compute the impacts of attack activities on missions. We use NIST National Vulnerability Database's (NVD)-Common Vulnerability Scoring System (CVSS) scores or forensic investigators' estimates in our impact computations. We present a case study to show the utility of our model.

2018-04-11
Wang, Wenhao, Chen, Guoxing, Pan, Xiaorui, Zhang, Yinqian, Wang, XiaoFeng, Bindschaedler, Vincent, Tang, Haixu, Gunter, Carl A..  2017.  Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2421–2434.

Side-channel risks of Intel SGX have recently attracted great attention. Under the spotlight is the newly discovered page-fault attack, in which an OS-level adversary induces page faults to observe the page-level access patterns of a protected process running in an SGX enclave. With almost all proposed defense focusing on this attack, little is known about whether such efforts indeed raise the bar for the adversary, whether a simple variation of the attack renders all protection ineffective, not to mention an in-depth understanding of other attack surfaces in the SGX system. In the paper, we report the first step toward systematic analyses of side-channel threats that SGX faces, focusing on the risks associated with its memory management. Our research identifies 8 potential attack vectors, ranging from TLB to DRAM modules. More importantly, we highlight the common misunderstandings about SGX memory side channels, demonstrating that high frequent AEXs can be avoided when recovering EdDSA secret key through a new page channel and fine-grained monitoring of enclave programs (at the level of 64B) can be done through combining both cache and cross-enclave DRAM channels. Our findings reveal the gap between the ongoing security research on SGX and its side-channel weaknesses, redefine the side-channel threat model for secure enclaves, and can provoke a discussion on when to use such a system and how to use it securely.

2018-05-27
2018-04-11
Yoon, Man-Ki, Mohan, Sibin, Choi, Jaesik, Christodorescu, Mihai, Sha, Lui.  2017.  Learning Execution Contexts from System Call Distribution for Anomaly Detection in Smart Embedded System. Proceedings of the Second International Conference on Internet-of-Things Design and Implementation. :191–196.

Existing techniques used for anomaly detection do not fully utilize the intrinsic properties of embedded devices. In this paper, we propose a lightweight method for detecting anomalous executions using a distribution of system call frequencies. We use a cluster analysis to learn the legitimate execution contexts of embedded applications and then monitor them at run-time to capture abnormal executions. Our prototype applied to a real-world open-source embedded application shows that the proposed method can effectively detect anomalous executions without relying on sophisticated analyses or affecting the critical execution paths.

2017-04-03
2018-01-16
Landsborough, Jason, Harding, Stephen, Fugate, Sunny.  2017.  Learning from Super-mutants: Searching Post-apocalyptic Software Ecosystems for Novel Semantics-preserving Transforms. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1529–1536.

In light of recent advances in genetic-algorithm-driven automated program modification, our team has been actively exploring the art, engineering, and discovery of novel semantics-preserving transforms. While modern compilers represent some of the best ideas we have for automated program modification, current approaches represent only a small subset of the types of transforms which can be achieved. In the wilderness of post-apocalyptic software ecosystems of genetically-modified and mutant programs, there exist a broad array of potentially useful software mutations, including semantics-preserving transforms that may play an important role in future software design, development, and most importantly, evolution.

2018-11-19
Charikar, Moses, Steinhardt, Jacob, Valiant, Gregory.  2017.  Learning from Untrusted Data. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. :47–60.

The vast majority of theoretical results in machine learning and statistics assume that the training data is a reliable reflection of the phenomena to be learned. Similarly, most learning techniques used in practice are brittle to the presence of large amounts of biased or malicious data. Motivated by this, we consider two frameworks for studying estimation, learning, and optimization in the presence of significant fractions of arbitrary data. The first framework, list-decodable learning, asks whether it is possible to return a list of answers such that at least one is accurate. For example, given a dataset of n points for which an unknown subset of $\alpha$n points are drawn from a distribution of interest, and no assumptions are made about the remaining (1 - $\alpha$)n points, is it possible to return a list of poly(1/$\alpha$) answers? The second framework, which we term the semi-verified model, asks whether a small dataset of trusted data (drawn from the distribution in question) can be used to extract accurate information from a much larger but untrusted dataset (of which only an $\alpha$-fraction is drawn from the distribution). We show strong positive results in both settings, and provide an algorithm for robust learning in a very general stochastic optimization setting. This result has immediate implications for robustly estimating the mean of distributions with bounded second moments, robustly learning mixtures of such distributions, and robustly finding planted partitions in random graphs in which significant portions of the graph have been perturbed by an adversary.

2018-05-27
Abhinav Ganesan, Sidharth Jaggi, Venkatesh Saligrama.  2017.  Learning Immune-Defectives Graph Through Group Tests. {IEEE} Trans. Information Theory. 63:3010–3028.
2018-10-26
Carpineto, Claudio, Romano, Giovanni.  2017.  Learning to Detect and Measure Fake Ecommerce Websites in Search-engine Results. Proceedings of the International Conference on Web Intelligence. :403–410.

When searching for a brand name in search engines, it is very likely to come across websites that sell fake brand's products. In this paper, we study how to tackle and measure this problem automatically. Our solution consists of a pipeline with two learning stages. We first detect the ecommerce websites (including shopbots) present in the list of search results and then discriminate between legitimate and fake ecommerce websites. We identify suitable learning features for each stage and show through a prototype system termed RI.SI.CO. that this approach is feasible, fast, and highly effective. Experimenting with one goods sector, we found that RI.SI.CO. achieved better classification accuracy than that of non-expert humans. We next show that the information extracted by our method can be used to generate sector-level 'counterfeiting charts' that allow us to analyze and compare the counterfeit risk associated with different brands in a same sector. We also show that the risk of coming across counterfeit websites is affected by the particular web search engine and type of search query used by shoppers. Our research offers new insights and some very practical and useful means for analyzing and measuring counterfeit ecommerce websites in search-engine results, thus enabling targeted anti-counterfeiting actions.

2018-01-10
Zhang, L., Restuccia, F., Melodia, T., Pudlewski, S. M..  2017.  Learning to detect and mitigate cross-layer attacks in wireless networks: Framework and applications. 2017 IEEE Conference on Communications and Network Security (CNS). :1–9.

Security threats such as jamming and route manipulation can have significant consequences on the performance of modern wireless networks. To increase the efficacy and stealthiness of such threats, a number of extremely challenging, next-generation cross-layer attacks have been recently unveiled. Although existing research has thoroughly addressed many single-layer attacks, the problem of detecting and mitigating cross-layer attacks still remains unsolved. For this reason, in this paper we propose a novel framework to analyze and address cross-layer attacks in wireless networks. Specifically, our framework consists of a detection and a mitigation component. The attack detection component is based on a Bayesian learning detection scheme that constructs a model of observed evidence to identify stealthy attack activities. The mitigation component comprises a scheme that achieves the desired trade-off between security and performance. We specialize and evaluate the proposed framework by considering a specific cross-layer attack that uses jamming as an auxiliary tool to achieve route manipulation. Simulations and experimental results obtained with a testbed made up by USRP software-defined radios demonstrate the effectiveness of the proposed methodology.

2018-05-17
2018-05-27
Namaki, M, Chowdhury, F, Islam, M, Doppa, J, Wu, Y.  2017.  Learning to Speed Up Query Planning in Graph Databases. International Conference on Automated Planning and Scheduling.
2018-11-28
Deng, Zhaoxia, Feldman, Ariel, Kurtz, Stuart A., Chong, Frederic T..  2017.  Lemonade from Lemons: Harnessing Device Wearout to Create Limited-Use Security Architectures. Proceedings of the 44th Annual International Symposium on Computer Architecture. :361–374.

Most architectures are designed to mitigate the usually undesirable phenomenon of device wearout. We take a contrarian view and harness this phenomenon to create hardware security mechanisms that resist attacks by statistically enforcing an upper bound on hardware uses, and consequently attacks. For example, let us assume that a user may log into a smartphone a maximum of 50 times a day for 5 years, resulting in approximately 91,250 legitimate uses. If we assume at least 8-character passwords and we require login (and retrieval of the storage decryption key) to traverse hardware that wears out in 91,250 uses, then an adversary has a negligible chance of successful brute-force attack before the hardware wears out, even assuming real-world password cracking by professionals. M-way replication of our hardware and periodic re-encryption of storage can increase the daily usage bound by a factor of M. The key challenge is to achieve practical statistical bounds on both minimum and maximum uses for an architecture, given that individual devices can vary widely in wearout characteristics. We introduce techniques for architecturally controlling these bounds and perform a design space exploration for three use cases: a limited-use connection, a limited-use targeting system and one-time pads. These techniques include decision trees, parallel structures, Shamir's secret-sharing mechanism, Reed-Solomon codes, and module replication. We explore the cost in area, energy and latency of using these techniques to achieve system-level usage targets given device-level wearout distributions. With redundant encoding, for example, we can improve exponential sensitivity to device lifetime variation to linear sensitivity, reducing the total number of NEMS devices by 4 orders of magnitude to about 0.8 million for limited-use connections (compared with 4 billion if without redundant encoding).

2017-07-18
2018-11-28
Sachidananda, Vinay, Siboni, Shachar, Shabtai, Asaf, Toh, Jinghui, Bhairav, Suhas, Elovici, Yuval.  2017.  Let the Cat Out of the Bag: A Holistic Approach Towards Security Analysis of the Internet of Things. Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security. :3–10.

The exponential increase of Internet of Things (IoT) devices have resulted in a range of new and unanticipated vulnerabilities associated with their use. IoT devices from smart homes to smart enterprises can easily be compromised. One of the major problems associated with the IoT is maintaining security; the vulnerable nature of IoT devices poses a challenge to many aspects of security, including security testing and analysis. It is trivial to perform the security analysis for IoT devices to understand the loop holes and very nature of the devices itself. Given these issues, there has been less emphasis on security testing and analysis of the IoT. In this paper, we show our preliminary efforts in the area of security analysis for IoT devices and introduce a security IoT testbed for performing security analysis. We also discuss the necessary design, requirements and the architecture to support our security analysis conducted via the proposed testbed.

2018-02-06
Masduki, B. W., Ramli, K., Salman, M..  2017.  Leverage Intrusion Detection System Framework for Cyber Situational Awareness System. 2017 International Conference on Smart Cities, Automation Intelligent Computing Systems (ICON-SONICS). :64–69.

As one of the security components in cyber situational awareness systems, Intrusion Detection System (IDS) is implemented by many organizations in their networks to address the impact of network attacks. Regardless of the tools and technologies used to generate security alarms, IDS can provide a situation overview of network traffic. With the security alarm data generated, most organizations do not have the right techniques and further analysis to make this alarm data more valuable for the security team to handle attacks and reduce risk to the organization. This paper proposes the IDS Metrics Framework for cyber situational awareness system that includes the latest technologies and techniques that can be used to create valuable metrics for security advisors in making the right decisions. This metrics framework consists of the various tools and techniques used to evaluate the data. The evaluation of the data is then used as a measurement against one or more reference points to produce an outcome that can be very useful for the decision making process of cyber situational awareness system. This metric offers an additional Graphical User Interface (GUI) tools that produces graphical displays and provides a great platform for analysis and decision-making by security teams.

2018-01-23
Alasad, Qutaiba, Yuan, Jiann, Fan, Deliang.  2017.  Leveraging All-Spin Logic to Improve Hardware Security. Proceedings of the on Great Lakes Symposium on VLSI 2017. :491–494.

Due to the globalization of Integrated Circuit (IC) design in the semiconductor industry and the outsourcing of chip manufacturing, third Party Intellectual Properties (3PIPs) become vulnerable to IP piracy, reverse engineering, counterfeit IC, and hardware trojans. A designer has to employ a strong technique to thwart such attacks, e.g. using Strong Logic Locking method [1]. But, such technique cannot be used to protect some circuits since the inserted key-gates rely on the topology of the circuit. Also, it requires higher power, delay, and area overheads compared to other techniques. In this paper, we present the use of spintronic devices to help protect ICs with less performance overhead. We then evaluate the proposed design based on security metric and performance overhead. One of the best spintronic device candidates is the All Spin Logic due to its unique properties: small area, no spin-charge signal conversion, and its compatibility with conventional CMOS technology.

2017-12-12
Hosseini, Fateme S., Fotouhi, Pouya, Yang, Chengmo, Gao, Guang R..  2017.  Leveraging Compiler Optimizations to Reduce Runtime Fault Recovery Overhead. Proceedings of the 54th Annual Design Automation Conference 2017. :20:1–20:6.

Smaller feature size, lower supply voltage, and faster clock rates have made modern computer systems more susceptible to faults. Although previous fault tolerance techniques usually target a relatively low fault rate and consider error recovery less critical, with the advent of higher fault rates, recovery overhead is no longer negligible. In this paper, we propose a scheme that leverages and revises a set of compiler optimizations to design, for each application hotspot, a smart recovery plan that identifies the minimal set of instructions to be re-executed in different fault scenarios. Such fault scenario and recovery plan information is efficiently delivered to the processor for runtime fault recovery. The proposed optimizations are implemented in LLVM and GEM5. The results show that the proposed scheme can significantly reduce runtime recovery overhead by 72%.

2018-02-06
Haider, Syed Kamran, Omar, Hamza, Lebedev, Ilia, Devadas, Srinivas, van Dijk, Marten.  2017.  Leveraging Hardware Isolation for Process Level Access Control & Authentication. Proceedings of the 22Nd ACM on Symposium on Access Control Models and Technologies. :133–141.

Critical resource sharing among multiple entities in a processing system is inevitable, which in turn calls for the presence of appropriate authentication and access control mechanisms. Generally speaking, these mechanisms are implemented via trusted software "policy checkers" that enforce certain high level application-specific "rules" to enforce a policy. Whether implemented as operating system modules or embedded inside the application ad hoc, these policy checkers expose additional attack surface in addition to the application logic. In order to protect application software from an adversary, modern secure processing platforms, such as Intel's Software Guard Extensions (SGX), employ principled hardware isolation to offer secure software containers or enclaves to execute trusted sensitive code with some integrity and privacy guarantees against a privileged software adversary. We extend this model further and propose using these hardware isolation mechanisms to shield the authentication and access control logic essential to policy checker software. While relying on the fundamental features of modern secure processors, our framework introduces productive software design guidelines which enable a guarded environment to execute sensitive policy checking code - hence enforcing application control flow integrity - and afford flexibility to the application designer to construct appropriate high-level policies to customize policy checker software.

2018-05-11
Giraldo, Jairo, Cardenas, Alvaro, Kantarcioglu, Murat.  2017.  Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms. Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. :1–12.
2018-11-28
Hoshida, Masahiro, Tamura, Masahiko, Hayashi, Yugo.  2017.  Lexical Entrainment Toward Conversational Agents: An Experimental Study on Top-down Processing and Bottom-up Processing. Proceedings of the 5th International Conference on Human Agent Interaction. :189–194.

The purpose of this paper is to examine the influence of lexical entrainment while communicating with a conversational agent. We consider two types of cognitive information processing:top-down processing, which depends on prior knowledge, and bottom-up processing, which depends on one's partners' behavior. Each works mutually complementarily in interpersonal cognition. It was hypothesized that we will separate each method of processing because of the agent's behavior. We designed a word choice task where participants and the agent described pictures and selected them alternately and held two factors constant:First, the expectation about the agent's intelligence by the experimenter's instruction as top-down processing; second, the agent's behavior, manipulating the degree of intellectual impression, as bottom-up processing. The results show that people select words differently because of the diversity of expressed behavior and thus supported our hypothesis. The findings obtained in this study could bring about new guidelines for a human-to-agent language interface.

2018-03-26
Nie, Chuanyao, Wu, Hui, Zheng, Wenguang.  2017.  Lifetime-Aware Data Collection Using a Mobile Sink in WSNs with Unreachable Regions. Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems. :143–152.

Using mobile sinks to collect sensed data in WSNs (Wireless Sensor Network) is an effective technique for significantly improving the network lifetime. We investigate the problem of collecting sensed data using a mobile sink in a WSN with unreachable regions such that the network lifetime is maximized and the total tour length is minimized, and propose a polynomial-time heuristic, an ILP-based (Integer Linear Programming) heuristic and an MINLP-based (Mixed-Integer Non-Linear Programming) algorithm for constructing a shortest path routing forest for the sensor nodes in unreachable regions, two energy-efficient heuristics for partitioning the sensor nodes in reachable regions into disjoint clusters, and an efficient approach to convert the tour construction problem into a TSP (Travelling Salesman Problem). We have performed extensive simulations on 100 instances with 100, 150, 200, 250 and 300 sensor nodes in an urban area and a forest area. The simulation results show that the average lifetime of all the network instances achieved by the polynomial-time heuristic is 74% of that achieved by the ILP-based heuristic and 65% of that obtained by the MINLP-based algorithm, and our tour construction heuristic significantly outperforms the state-of-the-art tour construction heuristic EMPS.