Biblio
This paper proposes a deep learning-based white-hat worm launcher in Botnet Defense System (BDS). BDS uses white-hat botnets to defend an IoT system against malicious botnets. White-hat worm launcher literally launches white-hat worms to create white-hat botnets according to the strategy decided by BDS. The proposed launcher learns with deep learning where is the white-hat worms' right place to successfully drive out malicious botnets. Given a system situation invaded by malicious botnets, it predicts a worms' placement by the learning result and launches them. We confirmed the effect of the proposed launcher through simulating evaluation.
Trust is a critical issue in human-robot interactions (HRI) as it is the core of human desire to accept and use a non-human agent. Theory of Mind (ToM) has been defined as the ability to understand the beliefs and intentions of others that may differ from one's own. Evidences in psychology and HRI suggest that trust and ToM are interconnected and interdependent concepts, as the decision to trust another agent must depend on our own representation of this entity's actions, beliefs and intentions. However, very few works take ToM of the robot into consideration while studying trust in HRI. In this paper, we investigated whether the exposure to the ToM abilities of a robot could affect humans' trust towards the robot. To this end, participants played a Price Game with a humanoid robot (Pepper) that was presented having either low-level ToM or high-level ToM. Specifically, the participants were asked to accept the price evaluations on common objects presented by the robot. The willingness of the participants to change their own price judgement of the objects (i.e., accept the price the robot suggested) was used as the main measurement of the trust towards the robot. Our experimental results showed that robots possessing a high-level of ToM abilities were trusted more than the robots presented with low-level ToM skills.
Defender-attacker Stackelberg security games (SSGs) have been applied for solving many real-world security problems. Recent work in SSGs has incorporated a deceptive signaling scheme into the SSG model, where the defender strategically reveals information about her defensive strategy to the attacker, in order to influence the attacker’s decision making for the defender’s own benefit. In this work, we study the problem of signaling in security games against a boundedly rational attacker.
Every day, university networks are bombarded with attempts to steal the sensitive data of the various disparate domains and organizations they serve. For this reason, universities form teams of information security specialists called a Security Operations Center (SOC) to manage the complex operations involved in monitoring and mitigating such attacks. When a suspicious event is identified, members of the SOC are tasked to understand the nature of the event in order to respond to any damage the attack might have caused. This process is defined by administrative policies which are often very high-level and rarely systematically defined. This impedes the implementation of generalized and automated event response solutions, leading to specific ad hoc solutions based primarily on human intuition and experience as well as immediate administrative priorities. These solutions are often fragile, highly specific, and more difficult to reuse in other scenarios.
Today's smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks.
Internet of Things (IoT) is an evolving research area for the last two decades. The integration of the IoT and social networking concept results in developing an interdisciplinary research area called the Social Internet of Things (SIoT). The SIoT is dominant over the traditional IoT because of its structure, implementation, and operational manageability. In the SIoT, devices interact with each other independently to establish a social relationship for collective goals. To establish trustworthy relationships among the devices significantly improves the interaction in the SIoT and mitigates the phenomenon of risk. The problem is to choose a trustworthy node who is most suitable according to the choice parameters of the node. The best-selected node by one node is not necessarily the most suitable node for other nodes, as the trustworthiness of the node is independent for everyone. We employ some theoretical characterization of the soft-set theory to deal with this kind of decision-making problem. In this paper, we developed a weighted based trustworthiness ranking model by using soft set theory to evaluate the trustworthiness in the SIoT. The purpose of the proposed research is to reduce the risk of fraudulent transactions by identifying the most trusted nodes.
Network attacks continue to pose threats to missions in cyber space. To prevent critical missions from getting impacted or minimize the possibility of mission impact, active cyber defense is very important. Mission impact graph is a graphical model that enables mission impact assessment and shows how missions can be possibly impacted by cyber attacks. Although the mission impact graph provides valuable information, it is still very difficult for human analysts to comprehend due to its size and complexity. Especially when given limited resources, human analysts cannot easily decide which security measures to take first with respect to mission assurance. Therefore, this paper proposes to apply a ranking algorithm towards the mission impact graph so that the huge amount of information can be prioritized. The actionable conditions that can be managed by security admins are ranked with numeric values. The rank enables efficient utilization of limited resources and provides guidance for taking security countermeasures.
The rapid growth and globalization of the integrated circuit (IC) industry put the threat of hardware Trojans (HTs) front and center among all security concerns in the IC supply chain. Current Trojan detection approaches always assume HTs are composed of digital circuits. However, recent demonstrations of analog attacks, such as A2 and Rowhammer, invalidate the digital assumption in previous HT detection or testing methods. At the system level, attackers can utilize the analog properties of the underlying circuits such as charge-sharing and capacitive coupling effects to create information leakage paths. These new capacitor-based vulnerabilities are rarely covered in digital testings. To address these stealthy yet harmful threats, we identify a large class of such capacitor-enabled attacks and define them as charge-domain Trojans. We are able to abstract the detailed charge-domain models for these Trojans and expose the circuit-level properties that critically contribute to their information leakage paths. Aided by the abstract models, an information flow tracking (IFT) based solution is developed to detect charge-domain leakage paths and then identify the charge-domain Trojans/vulnerabilities. Our proposed method is validated on an experimental RISC microcontroller design injected with different variants of charge-domain Trojans. We demonstrate that successful detection can be accomplished with an automatic tool which realizes the IFT-based solution.
Today's virtual switches not only support legacy network protocols and standard network management interfaces, but also become adapted to OpenFlow as a prevailing communication protocol. This makes them a core networking component of today's virtualized infrastructures which are able to handle sophisticated networking scenarios in a flexible and software-defined manner. At the same time, these virtual SDN data planes become high-value targets because a compromised switch is hard to detect while it affects all components of a virtualized/SDN-based environment.Most of the well known programmable virtual switches in the market are open source which makes them cost-effective and yet highly configurable options in any network infrastructure deployment. However, this comes at a cost which needs to be addressed. Accordingly, this paper raises an alarm on how attackers may leverage white box analysis of software switch functionalities to lunch effective low profile attacks against it. In particular, we practically present how attackers can systematically take advantage of static and dynamic code analysis techniques to lunch a low rate saturation attack on virtual SDN data plane in a cloud data center.
Network virtualization is a fundamental technology for datacenters and upcoming wireless communications (e.g., 5G). It takes advantage of software-defined networking (SDN) that provides efficient network management by converting networking fabrics into SDN-capable devices. Moreover, white-box switches, which provide flexible and fast packet processing, are broadly deployed in commercial datacenters. A white-box switch requires a specific and restricted packet processing pipeline; however, to date, there has been no SDN-based network hypervisor that can support the pipeline of white-box switches. Therefore, in this paper, we propose WhiteVisor: a network hypervisor which can support the physical network composed of white-box switches. WhiteVisor converts a flow rule from the virtual network into a packet processing pipeline compatible with the white-box switch. We implement the prototype herein and show its feasibility and effectiveness with pipeline conversion and overhead.