Biblio
Major online messaging services such as Facebook Messenger and WhatsApp are starting to provide users with real-time information about when people read their messages, while useful, the feature has the potential to negatively impact privacy as well as cause concern over access to self. We report on two surveys using Mechanical Turk which looked at senders' (N=402\vphantom\\ use of and reactions to the `message seen' feature, and recipients' (N=316) privacy and signaling behaviors in the face of such visibility. Our findings indicate that senders experience a range of emotions when their message is not read, or is read but not answered immediately. Recipients also engage in various signaling behaviors in the face of visibility by both replying or not replying immediately.
Trustworthy operation of industrial control systems depends on secure and real-time code execution on the embedded programmable logic controllers (PLCs). The controllers monitor and control the critical infrastructures, such as electric power grids and healthcare platforms, and continuously report back the system status to human operators. We present Zeus, a contactless embedded controller security monitor to ensure its execution control flow integrity. Zeus leverages the electromagnetic emission by the PLC circuitry during the execution of the controller programs. Zeus's contactless execution tracking enables non-intrusive monitoring of security-critical controllers with tight real-time constraints. Those devices often cannot tolerate the cost and performance overhead that comes with additional traditional hardware or software monitoring modules. Furthermore, Zeus provides an air-gap between the monitor (trusted computing base) and the target (potentially compromised) PLC. This eliminates the possibility of the monitor infection by the same attack vectors. Zeus monitors for control flow integrity of the PLC program execution. Zeus monitors the communications between the human machine interface and the PLC, and captures the control logic binary uploads to the PLC. Zeus exercises its feasible execution paths, and fingerprints their emissions using an external electromagnetic sensor. Zeus trains a neural network for legitimate PLC executions, and uses it at runtime to identify the control flow based on PLC's electromagnetic emissions. We implemented Zeus on a commercial Allen Bradley PLC, which is widely used in industry, and evaluated it on real-world control program executions. Zeus was able to distinguish between different legitimate and malicious executions with 98.9% accuracy and with zero overhead on PLC execution by design.
Decoy routing is an emerging approach for censorship circumvention in which circumvention is implemented with help from a number of volunteer Internet autonomous systems, called decoy ASes. Recent studies on decoy routing consider all decoy routing systems to be susceptible to a fundamental attack – regardless of their specific designs–in which the censors re-route traffic around decoy ASes, thereby preventing censored users from using such systems. In this paper, we propose a new architecture for decoy routing that, by design, is significantly stronger to rerouting attacks compared to all previous designs. Unlike previous designs, our new architecture operates decoy routers only on the downstream traffic of the censored users; therefore we call it downstream-only decoy routing. As we demonstrate through Internet-scale BGP simulations, downstream-only decoy routing offers significantly stronger resistance to rerouting attacks, which is intuitively because a (censoring) ISP has much less control on the downstream BGP routes of its traffic. Designing a downstream-only decoy routing system is a challenging engineering problem since decoy routers do not intercept the upstream traffic of censored users. We design the first downstream-only decoy routing system, called Waterfall, by devising unique covert communication mechanisms. We also use various techniques to make our Waterfall implementation resistant to traffic analysis attacks. We believe that downstream-only decoy routing is a significant step towards making decoy routing systems practical. This is because a downstream-only decoy routing system can be deployed using a significantly smaller number of volunteer ASes, given a target resistance to rerouting attacks. For instance, we show that a Waterfall implementation with only a single decoy AS is as resistant to routing attacks (against China) as a traditional decoy system (e.g., Telex) with 53 decoy ASes.
As increasingly more enterprises are deploying cloud file-sharing services, this adds a new channel for potential insider threats to company data and IPs. In this paper, we introduce a two-stage machine learning system to detect anomalies. In the first stage, we project the access logs of cloud file-sharing services onto relationship graphs and use three complementary graph-based unsupervised learning methods: OddBall, PageRank and Local Outlier Factor (LOF) to generate outlier indicators. In the second stage, we ensemble the outlier indicators and introduce the discrete wavelet transform (DWT) method, and propose a procedure to use wavelet coefficients with the Haar wavelet function to identify outliers for insider threat. The proposed system has been deployed in a real business environment, and demonstrated effectiveness by selected case studies.
Now a day, need for fast accessing of data is increasing with the exponential increase in the security field. QR codes have served as a useful tool for fast and convenient sharing of data. But with increased usage of QR Codes have become vulnerable to attacks such as phishing, pharming, manipulation and exploitation. These security flaws could pose a danger to an average user. In this paper we have proposed a way, called Secured QR (SQR) to fix all these issues. In this approach we secure a QR code with the help of a key in generator side and the same key is used to get the original information at scanner side. We have used AES algorithm for this purpose. SQR approach is applicable when we want to share/use sensitive information in the organization such as sharing of profile details, exchange of payment information, business cards, generation of electronic tickets etc.
Wearables, such as Fitbit, Apple Watch, and Microsoft Band, with their rich collection of sensors, facilitate the tracking of healthcare- and wellness-related metrics. However, the assessment of the physiological metrics collected by these devices could also be useful in identifying the user of the wearable, e.g., to detect unauthorized use or to correctly associate the data to a user if wearables are shared among multiple users. Further, researchers and healthcare providers often rely on these smart wearables to monitor research subjects and patients in their natural environments over extended periods of time. Here, it is important to associate the sensed data with the corresponding user and to detect if a device is being used by an unauthorized individual, to ensure study compliance. Existing one-time authentication approaches using credentials (e.g., passwords, certificates) or trait-based biometrics (e.g., face, fingerprints, iris, voice) might fail, since such credentials can easily be shared among users. In this paper, we present a continuous and reliable wearable-user authentication mechanism using coarse-grain minute-level physical activity (step counts) and physiological data (heart rate, calorie burn, and metabolic equivalent of task). From our analysis of 421 Fitbit users from a two-year long health study, we are able to statistically distinguish nearly 100% of the subject-pairs and to identify subjects with an average accuracy of 92.97%.
Measuring fidgeting is an important goal for the psychology of mind-wandering and for human computer interaction (HCI). Previous work measuring the movement of the head, torso and thigh during HCI has shown that engaging screen content leads to non-instrumental movement inhibition (NIMI). Camera-based methods for measuring wrist movements are limited by occlusions. Here we used a high pass filtered magnitude of wearable tri-axial accelerometer recordings during 2-minute passive HCI stimuli as a surrogate for movement of the wrists and ankles. With 24 seated, healthy volunteers experiencing HCI, this metric showed that wrists moved significantly more than ankles. We found that NIMI could be detected in the wrists and ankles; it distinguished extremes of interest and boredom via restlessness. We conclude that both free-willed and forced screen engagement can elicit NIMI of the wrists and ankles.
Smart energy meters record electricity consumption and generation at fine-grained intervals, and are among the most widely deployed sensors in the world. Energy data embeds detailed information about a building's energy-efficiency, as well as the behavior of its occupants, which academia and industry are actively working to extract. In many cases, either inadvertently or by design, these third-parties only have access to anonymous energy data without an associated location. The location of energy data is highly useful and highly sensitive information: it can provide important contextual information to improve big data analytics or interpret their results, but it can also enable third-parties to link private behavior derived from energy data with a particular location. In this paper, we present Weatherman, which leverages a suite of analytics techniques to localize the source of anonymous energy data. Our key insight is that energy consumption data, as well as wind and solar generation data, largely correlates with weather, e.g., temperature, wind speed, and cloud cover, and that every location on Earth has a distinct weather signature that uniquely identifies it. Weatherman represents a serious privacy threat, but also a potentially useful tool for researchers working with anonymous smart meter data. We evaluate Weatherman's potential in both areas by localizing data from over one hundred smart meters using a weather database that includes data from over 35,000 locations. Our results show that Weatherman localizes coarse (one-hour resolution) energy consumption, wind, and solar data to within 16.68km, 9.84km, and 5.12km, respectively, on average, which is more accurate using much coarser resolution data than prior work on localizing only anonymous solar data using solar signatures.
Wikipedia is one of the most popular information platforms on the Internet. The user access pattern to Wikipedia pages depends on their relevance in the current worldwide social discourse. We use publically available statistics about the top-1000 most popular pages on each day to estimate the efficiency of caches for support of the platform. While the data volumes are moderate, the main goal of Wikipedia caches is to reduce access times for page views and edits. We study the impact of most popular pages on the achievable cache hit rate in comparison to Zipf request distributions and we include daily dynamics in popularity.
This paper develops a model for Wells turbine using Xilinx system generator (XSG)toolbox of Matlab. The Wells turbine is very popular in oscillating water column (OWC) wave energy converters. Mostly, the turbine behavior is emulated in a controlled DC or AC motor coupled with a generator. Therefore, it is required to model the OWC and Wells turbine in real time software like XSG. It generates the OWC turbine behavior in real time. Next, a PI control scheme is suggested for controlling the DC motor so as to emulate the Wells turbine efficiently. The overall performance of the system is tested with asquirrel cage induction generator (SCIG). The Pierson-Moskowitz and JONSWAP irregular wave models have been applied to validate the OWC model. Finally, the simulation results for Wells turbine and PI controller have beendiscussed.
Deception technology involves the generation of traps or deception decoys. The use of deception technology can help fool hackers into thinking that they have gained access to assets such as workstations, servers, applications, and more, in a real environment. Security teams can observe and monitor the operations, navigation, and tools of the hackers without the concern that any damage will occur on real assets. It is possible to detect breaches early, reduce false positives, and more, using deception technology.
The aim of deception technology is to prevent a cybercriminal that has managed to infiltrate a network from doing any significant damage. The technology works by generating traps or deception decoys that mimic legitimate technology assets throughout the infrastructure.
Logic locking is an intellectual property (IP) protection technique that prevents IP piracy, reverse engineering and overbuilding attacks by the untrusted foundry or end-users. Existing logic locking techniques are all based on locking the functionality; the design/chip is nonfunctional unless the secret key has been loaded. Existing techniques are vulnerable to various attacks, such as sensitization, key-pruning, and signal skew analysis enabled removal attacks. In this paper, we propose a tenacious and traceless logic locking technique, TTlock, that locks functionality and provably withstands all known attacks, such as SAT-based, sensitization, removal, etc. TTLock protects a secret input pattern; the output of a logic cone is flipped for that pattern, where this flip is restored only when the correct key is applied. Experimental results confirm our theoretical expectations that the computational complexity of attacks launched on TTLock grows exponentially with increasing key-size, while the area, power, and delay overhead increases only linearly. In this paper, we also coin ``parametric locking," where the design/chip behaves as per its specifications (performance, power, reliability, etc.) only with the secret key in place, and an incorrect key downgrades its parametric characteristics. We discuss objectives and challenges in parametric locking.
Recently, cellular operators have started migrating to IPv6 in response to the increasing demand for IP addresses. With the introduction of IPv6, cellular middleboxes, such as firewalls for preventing malicious traffic from the Internet and stateful NAT64 boxes for providing backward compatibility with legacy IPv4 services, have become crucial to maintain stability of cellular networks. This paper presents security problems of the currently deployed IPv6 middleboxes of five major operators. To this end, we first investigate several key features of the current IPv6 deployment that can harm the safety of a cellular network as well as its customers. These features combined with the currently deployed IPv6 middlebox allow an adversary to launch six different attacks. First, firewalls in IPv6 cellular networks fail to block incoming packets properly. Thus, an adversary could fingerprint cellular devices with scanning, and further, she could launch denial-of-service or over-billing attacks. Second, vulnerabilities in the stateful NAT64 box, a middlebox that maps an IPv6 address to an IPv4 address (and vice versa), allow an adversary to launch three different attacks: 1) NAT overflow attack that allows an adversary to overflow the NAT resources, 2) NAT wiping attack that removes active NAT mappings by exploiting the lack of TCP sequence number verification of firewalls, and 3) NAT bricking attack that targets services adopting IP-based blacklisting by preventing the shared external IPv4 address from accessing the service. We confirmed the feasibility of these attacks with an empirical analysis. We also propose effective countermeasures for each attack.