Biblio
In this paper, we present initial work towards creating an intelligent interface that can act as an open access laboratory for visual stylometry called WAIVS, Workflows for Analysis of Images and Visual Stylometry. WAIVS allows scholars, students, and other interested parties to explore the nature of artistic style using cutting-edge research methods in visual stylometry. We create semantic workflows for this interface using various computer vision algorithms that not only facilitate artistically significant analyses but also impose intelligent semantic constraints on complex analyses. In the interface, we combine these workflows with a manually-curated dataset for analysis of artistic style based on either the school of art or the medium.
The detection of bugs in software systems has been divided into two research areas: static code analysis and statistical modeling of historical data. Static analysis indicates precise problems on line numbers but has the disadvantage of suggesting many warning which are often false positives. In contrast, statistical models use the history of the system to suggest which files or commits are likely to contain bugs. These course-grained predictions do not indicate to the developer the precise reasons for the bug prediction. We combine static analysis with statistical bug models to limit the number of warnings and provide specific warnings information at the line level. Previous research was able to process only a limited number of releases, our tool, WarningsGuru, can analyze all commits in a source code repository and we currently have processed thousands of commits and warnings. Since we process every commit, we present developers with more precise information about when a warning is introduced allowing us to show recent warnings that are introduced in statistically risky commits. Results from two OSS projects show that CommitGuru's statistical model flags 25% and 29% of all commits as risky. When we combine this with static analysis in WarningsGuru the number of risky commits with warnings is 20% for both projects and the number commits with new warnings is only 3% and 6%. We can drastically reduce the number of commits and warnings developers have to examine. The tool, source code, and demo is available at https://github.com/louisq/warningsguru.
Mobile Ad Hoc Network (MANET) is pretty vulnerable to attacks because of its broad distribution and open nodes. Hence, an effective Intrusion Detection System (IDS) is vital in MANET to deter unwanted malicious attacks. An IDS has been proposed in this paper based on watchdog and pathrater method as well as evaluation of its performance has been presented using Dynamic Source Routing (DSR) and Ad-hoc On-demand Distance Vector (AODV) routing protocols with and without considering the effect of the sinkhole attack. The results obtained justify that the proposed IDS is capable of detecting suspicious activities and identifying the malicious nodes. Moreover, it replaces the fake route with a real one in the routing table in order to mitigate the security risks. The performance appraisal also suggests that the AODV protocol has a capacity of sending more packets than DSR and yields more throughput.
The increasing adoption of 3D printing in many safety and mission critical applications exposes 3D printers to a variety of cyber attacks that may result in catastrophic consequences if the printing process is compromised. For example, the mechanical properties (e.g., physical strength, thermal resistance, dimensional stability) of 3D printed objects could be significantly affected and degraded if a simple printing setting is maliciously changed. To address this challenge, this study proposes a model-free real-time online process monitoring approach that is capable of detecting and defending against the cyber-physical attacks on the firmwares of 3D printers. Specifically, we explore the potential attacks and consequences of four key printing attributes (including infill path, printing speed, layer thickness, and fan speed) and then formulate the attack models. Based on the intrinsic relation between the printing attributes and the physical observations, our defense model is established by systematically analyzing the multi-faceted, real-time measurement collected from the accelerometer, magnetometer and camera. The Kalman filter and Canny filter are used to map and estimate three aforementioned critical toolpath information that might affect the printing quality. Mel-frequency Cepstrum Coefficients are used to extract features for fan speed estimation. Experimental results show that, for a complex 3D printed design, our method can achieve 4% Hausdorff distance compared with the model dimension for infill path estimate, 6.07% Mean Absolute Percentage Error (MAPE) for speed estimate, 9.57% MAPE for layer thickness estimate, and 96.8% accuracy for fan speed identification. Our study demonstrates that, this new approach can effectively defend against the cyber-physical attacks on 3D printers and 3D printing process.
As the Internet technology develops rapidly, attacks against Tor networks becomes more and more frequent. So, it's more and more difficult for Tor network to meet people's demand to protect their private information. A method to improve the anonymity of Tor seems urgent. In this paper, we mainly talk about the principle of Tor, which is the largest anonymous communication system in the world, analyze the reason for its limited efficiency, and discuss the vulnerability of link fingerprint and node selection. After that, a node recognition model based on SVM is established, which verifies that the traffic characteristics expose the node attributes, thus revealing the link and destroying the anonymity. Based on what is done above, some measures are put forward to improve Tor protocol to make it more anonymous.
This paper introduces a new attack on recent messaging systems that protect communication metadata. The main observation is that if an adversary manages to compromise a user's friend, it can use this compromised friend to learn information about the user's other ongoing conversations. Specifically, the adversary learns whether a user is sending other messages or not, which opens the door to existing intersection and disclosure attacks. To formalize this compromised friend attack, we present an abstract scenario called the exclusive call center problem that captures the attack's root cause, and demonstrates that it is independent of the particular design or implementation of existing metadata-private messaging systems. We then introduce a new primitive called a private answering machine that can prevent the attack. Unfortunately, building a secure and efficient instance of this primitive under only computational hardness assumptions does not appear possible. Instead, we give a construction under the assumption that users can place a bound on their maximum number of friends and are okay leaking this information.
The recent breakthroughs in Artificial Intelligence (AI) have allowed individuals to rely on automated systems for a variety of reasons. Some of these systems are the currently popular voice-enabled systems like Echo by Amazon and Home by Google that are also called as Intelligent Personal Assistants (IPAs). Though there are rising concerns about privacy and ethical implications, users of these IPAs seem to continue using these systems. We aim to investigate to what extent users are concerned about privacy and how they are handling these concerns while using the IPAs. By utilizing the reviews posted online along with the responses to a survey, this paper provides a set of insights about the detected markers related to user interests and privacy challenges. The insights suggest that users of these systems irrespective of their concerns about privacy, are generally positive in terms of utilizing IPAs in their everyday lives. However, there is a significant percentage of users who are concerned about privacy and take further actions to address related concerns. Some percentage of users expressed that they do not have any privacy concerns but when they learned about the "always listening" feature of these devices, their concern about privacy increased.
Query authentication has been extensively studied to ensure the integrity of query results for outsourced databases, which are often not fully trusted. However, access control, another important security concern, is largely ignored by existing works. Notably, recent breakthroughs in cryptography have enabled fine-grained access control over outsourced data. In this paper, we take the first step toward studying the problem of authenticating relational queries with fine-grained access control. The key challenge is how to protect information confidentiality during query authentication, which is essential to many critical applications. To address this challenge, we propose a novel access-policy-preserving (APP) signature as the primitive authenticated data structure. A useful property of the APP signature is that it can be used to derive customized signatures for unauthorized users to prove the inaccessibility while achieving the zero-knowledge confidentiality. We also propose a grid-index-based tree structure that can aggregate APP signatures for efficient range and join query authentication. In addition to this, a number of optimization techniques are proposed to further improve the authentication performance. Security analysis and performance evaluation show that the proposed solutions and techniques are robust and efficient under various system settings.
As a frequent participant in eSociety, Willeke is often preoccupied with paperwork because there is no easy to use, affordable way to act as a qualified person in the digital world. Confidential interactions take place over insecure channels like e-mail and post. This situation poses risks and costs for service providers, civilians and governments, while goals regarding confidentiality and privacy are not always met. The objective of this paper is to demonstrate an alternative architecture in which identifying persons, exchanging information, authorizing external parties and signing documents will become more user-friendly and secure. As a starting point, each person has their personal data space, provided by a qualified trust service provider that also issues a high level of assurance electronic ID. Three main building blocks are required: (1) secure exchange between the personal data space of each person, (2) coordination functionalities provided by a token based infrastructure, and (3) governance over this infrastructure. Following the design science research approach, we developed prototypes of the building blocks that we will pilot in practice. Policy makers and practitioners that want to enable Willeke to get rid of her paperwork can find guidance throughout this paper and are welcome to join the pilots in the Netherlands.
This is very true for the Windows operating system (OS) used by government and private organizations. With Windows, the closed source nature of the operating system has unfortunately meant that hidden security issues are discovered very late and the fixes are not found in real time. There needs to be a reexamination of current static methods of malware detection. This paper presents an integrated system for automated and real-time monitoring and prediction of rootkit and malware threats for the Windows OS. We propose to host the target Windows machines on the widely used Xen hypervisor, and collect process behavior using virtual memory introspection (VMI). The collected data will be analyzed using state of the art machine learning techniques to quickly isolate malicious process behavior and alert system administrators about potential cyber breaches. This research has two focus areas: identifying memory data structures and developing prediction tools to detect malware. The first part of research focuses on identifying memory data structures affected by malware. This includes extracting the kernel data structures with VMI that are frequently targeted by rootkits/malware. The second part of the research will involve development of a prediction tool using machine learning techniques.
The Internet of Things (IoT) provides transparent and seamless incorporation of heterogeneous and different end systems. It has been widely used in many applications such as smart homes. However, people may resist the IOT as long as there is no public confidence that it will not cause any serious threats to their privacy. Effective secure key management for things authentication is the prerequisite of security operations. In this paper, we present an interactive key management protocol and a non-interactive key management protocol to minimize the communication cost of the things. The security analysis show that the proposed schemes are resilient to various types of attacks.
With the advancement in the wireless technology there are more and more devices connected over WiFi network. Security is one of the major concerns about WiFi other than performance, range, usability, etc. WiFi Auditor is a collection of WiFi testing tools and services packed together inside Raspberry Pi 3 module. The WiFi auditor allows the penetration tester to conduct WiFi attacks and reconnaissance on the selected client or on the complete network. WiFi auditor is portable and stealth hence allowing the attacker to simulate the attacks without anyone noticing them. WiFi auditor provides services such as deliberate jamming, blocking or interference with authorized wireless communications which can be done to the whole network or just a particular node.
Most two-factor authentication (2FA) implementations rely on the user possessing and interacting with a secondary device (e.g. mobile phone) which has contributed to the lack of widespread uptake. We present a 2FA system, called Wi-Sign that does not rely on a secondary device for establishing the second factor. The user is required to sign at a designated place on the primary device with his finger following a successful first step of authentication (i.e. username + password). Wi-Sign captures the unique perturbations in the WiFi signals incurred due to the hand motion while signing and uses these to establish the second factor. Wi-Sign detects these perturbations by measuring the fine-grained Channel State Information (CSI) of the ambient WiFi signals at the device from which log-in attempt is being made. The logic is that, the user's hand geometry and the way he moves his hand while signing cause unique perturbations in CSI time-series. After filtering noise from the CSI data, principal component analysis is employed for compressing the CSI data. For segmentation of sign related perturbations, Wi-Sign utilizes the thresholding approach based on the variance of the first-order difference of the selected principal component. Finally, the authentication decision is made by feeding scrupulously selected features to a One-Class SVM classifier. We implement Wi-Sign using commodity off-the-shelf 802.11n devices and evaluate its performance by recruiting 14 volunteers. Our evaluation shows that Wi-Sign can on average achieve 79% TPR. Moreover, Wi-Sign can detect attacks with an average TNR of 86%.
The Structured Query Language Injection Attack (SQLIA) is one of the most serious and popular threats of web applications. The results of SQLIA include the data loss or complete host takeover. Detection of SQLIA is always an intractable challenge because of the heterogeneity of the attack payloads. In this paper, a novel method to detect SQLIA based on word vector of SQL tokens and LSTM neural networks is described. In the proposed method, SQL query strings were firstly syntactically analyzed into tokens, and then likelihood ratio test is used to build the word vector of SQL tokens, ultimately, an LSTM model is trained with sequences of token word vectors. We developed a tool named WOVSQLI, which implements the proposed technique, and it was evaluated with a dataset from several sources. The results of experiments demonstrate that WOVSQLI can effectively identify SQLIA.
We present a scalable dynamic analysis framework that allows for the automatic evaluation of the privacy behaviors of Android apps. We use our system to analyze mobile apps’ compliance with the Children’s Online Privacy Protection Act (COPPA), one of the few stringent privacy laws in the U.S. Based on our automated analysis of 5,855 of the most popular free children’s apps, we found that a majority are potentially in violation of COPPA, mainly due to their use of thirdparty SDKs. While many of these SDKs offer configuration options to respect COPPA by disabling tracking and behavioral advertising, our data suggest that a majority of apps either do not make use of these options or incorrectly propagate them across mediation SDKs. Worse, we observed that 19% of children’s apps collect identifiers or other personally identifiable information (PII) via SDKs whose terms of service outright prohibit their use in child-directed apps. Finally, we show that efforts by Google to limit tracking through the use of a resettable advertising ID have had little success: of the 3,454 apps that share the resettable ID with advertisers, 66% transmit other, non-resettable, persistent identifiers as well, negating any intended privacy-preserving properties of the advertising ID.
A malware attack that disrupted the opening ceremony of the 2018 Winter Olympics highlights false flag operations. The malware called the "Olympic Destroyer" contained code deriving from other well-known attacks launched by different hacking groups. This lead different cybersecurity companies to accuse Russia, North Korea, Iran, or China.
The possible interactions between a controller and its environment can naturally be modelled as the arena of a two-player game, and adding an appropriate winning condition permits to specify desirable behavior. The classical model here is the positional game, where both players can (fully or partially) observe the current position in the game graph, which in turn is indicative of their mutual current states. In practice, neither sensing or actuating the environment through physical devices nor data forwarding to and signal processing in the controller are instantaneous. The resultant delays force the controller to draw decisions before being aware of the recent history of a play. It is known that existence of a winning strategy for the controller in games with such delays is decidable over finite game graphs and with respect to ω-regular objectives. The underlying reduction, however, is impractical for non-trivial delays as it incurs a blow-up of the game graph which is exponential in the magnitude of the delay. For safety objectives, we propose a more practical incremental algorithm synthesizing a series of controllers handling increasing delays and reducing game-graph size in between. It is demonstrated using benchmark examples that even a simplistic explicit-state implementation of this algorithm outperforms state-of-the-art symbolic synthesis algorithms as soon as non-trivial delays have to be handled. We furthermore shed some light on the practically relevant case of non-order-preserving delays, as arising in actual networked control, thereby considerably extending the scope of regular game theory under delay pioneered by Klein and Zimmermann.
With the recent advances in computing, artificial intelligence (AI) is quickly becoming a key component in the future of advanced applications. In one application in particular, AI has played a major role - that of revolutionizing traditional healthcare assistance. Using embodied interactive agents, or interactive robots, in healthcare scenarios has emerged as an innovative way to interact with patients. As an essential factor for interpersonal interaction, trust plays a crucial role in establishing and maintaining a patient-agent relationship. In this paper, we discuss a study related to healthcare in which we examine aspects of trust between humans and interactive robots during a therapy intervention in which the agent provides corrective feedback. A total of twenty participants were randomly assigned to receive corrective feedback from either a robotic agent or a human agent. Survey results indicate trust in a therapy intervention coupled with a robotic agent is comparable to that of trust in an intervention coupled with a human agent. Results also show a trend that the agent condition has a medium-sized effect on trust. In addition, we found that participants in the robot therapist condition are 3.5 times likely to have trust involved in their decision than the participants in the human therapist condition. These results indicate that the deployment of interactive robot agents in healthcare scenarios has the potential to maintain quality of health for future generations.
This paper revealed the development and implementation of the wearable sensors based on transient responses of textile chemical sensors for odorant detection system as wearable sensor of humanoid robot. The textile chemical sensors consist of nine polymer/CNTs nano-composite gas sensors which can be divided into three different prototypes of the wearable humanoid robot; (i) human axillary odor monitoring, (ii) human foot odor tracking, and (iii) wearable personal gas leakage detection. These prototypes can be integrated into high-performance wearable wellness platform such as smart clothes, smart shoes and wearable pocket toxic-gas detector. While operating mode has been designed to use ZigBee wireless communication technology for data acquisition and monitoring system. Wearable humanoid robot offers several platforms that can be applied to investigate the role of individual scent produced by different parts of the human body such as axillary odor and foot odor, which have potential health effects from abnormal or offensive body odor. Moreover, wearable personal safety and security component in robot is also effective for detecting NH3 leakage in environment. Preliminary results with nine textile chemical sensors for odor biomarker and NH3 detection demonstrates the feasibility of using the wearable humanoid robot to distinguish unpleasant odor released when you're physically active. It also showed an excellent performance to detect a hazardous gas like ammonia (NH3) with sensitivity as low as 5 ppm.
Assertions are helpful in program analysis, such as software testing and verification. The most challenging part of automatically recommending assertions is to design the assertion patterns and to insert assertions in proper locations. In this paper, we develop Weak-Assert, a weakness-oriented assertion recommendation toolkit for program analysis of C code. A weakness-oriented assertion is an assertion which can help to find potential program weaknesses. Weak-Assert uses well-designed patterns to match the abstract syntax trees of source code automatically. It collects significant messages from trees and inserts assertions into proper locations of programs. These assertions can be checked by using program analysis techniques. The experiments are set up on Juliet test suite and several actual projects in Github. Experimental results show that Weak-Assert helps to find 125 program weaknesses in 26 actual projects. These weaknesses are confirmed manually to be triggered by some test cases.
This paper presents a theoretical background of main research activity focused on the evaluation of wiping/erasure standards which are mostly implemented in specific software products developed and programming for data wiping. The information saved in storage devices often consists of metadata and trace data. Especially but not only these kinds of data are very important in the process of forensic analysis because they sometimes contain information about interconnection on another file. Most people saving their sensitive information on their local storage devices and later they want to secure erase these files but usually there is a problem with this operation. Secure file destruction is one of many Anti-forensics methods. The outcome of this paper is to define the future research activities focused on the establishment of the suitable digital environment. This environment will be prepared for testing and evaluating selected wiping standards and appropriate eraser software.