Visible to the public BiblioConflict Detection Enabled

Filters: Keyword is cyber physical systems  [Clear All Filters]
2021-08-12
Anirudh Unni, Jochem Rieger.  2021.  Characterizing and modeling human states in human-CPS interactions at the brain-level.
presented at workshop ‘Safety Critical Human-Cyber-Physical Systems’, Oct 29, 2020
2021-08-11
Sulayman K. Sowe, Martin Fränzle, Jan-Patrick Osterloh, Alexander Trende, Lars Weber, Andreas Lüdtke.  2020.  Challenges for Integrating Humans into Vehicular Cyber-Physical Systems. Software Engineering and Formal Methods. 12226:20–26.
Advances in Vehicular Cyber-Physical Systems (VCPS) are the primary enablers of the shift from no automation to fully autonomous vehicles (AVs). One of the impacts of this shift is to develop safe AVs in which most or all of the functions of the human driver are replaced with an intelligent system. However, while some progress has been made in equipping AVs with advanced AI capabilities, VCPS designers are still faced with the challenge of designing trustworthy AVs that are in sync with the unpredictable behaviours of humans. In order to address this challenge, we present a model that describes how a Human Ambassador component can be integrated into the overall design of a new generation of VCPS. A scenario is presented to demonstrate how the model can work in practice. Formalisation and co-simulation challenges associated with integrating the Human Ambassador component and future work we are undertaking are also discussed.
2019-08-21
Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Shankar Sastry, Claire Tomlin, Werner Damm, Martin Frönzle, Jochem Rieger, Alexander Pretschner, Frank Köster.  2019.  Science of design for societal-scale cyber-physical systems: challenges and opportunities. Cyber-Physical Systems. 5:145-172.

Emerging industrial platforms such as the Internet of Things (IoT), Industrial Internet (II) in the US and Industrie 4.0 in Europe have tremendously accelerated the development of new generations of Cyber-Physical Systems (CPS) that integrate humans and human organizations (H-CPS) with physical and computation processes and extend to societal-scale systems such as traffic networks, electric grids, or networks of autonomous systems where control is dynamically shifted between humans and machines. Although such societal-scale CPS can potentially affect many aspect of our lives, significant societal strains have emerged about the new technology trends and their impact on how we live. Emerging tensions extend to regulations, certification, insurance, and other societal constructs that are necessary for the widespread adoption of new technologies. If these systems evolve independently in different parts of the world, they will ‘hard-wire’ the social context in which they are created, making interoperation hard or impossible, decreasing reusability, and narrowing markets for products and services. While impacts of new technology trends on social policies have received attention, the other side of the coin – to make systems adaptable to social policies – is nearly absent from engineering and computer science design practice. This paper focuses on technologies that can be adapted to varying public policies and presents (1) hard problems and technical challenges and (2) some recent research approaches and opportunities. The central goal of this paper is to discuss the challenges and opportunities for constructing H-CPS that can be parameterized by social context. The focus in on three major application domains: connected vehicles, transactive energy systems, and unmanned aerial vehicles.Abbreviations: CPS: Cyber-physical systems; H-CPS: Human-cyber-physical systems; CV: Connected vehicle; II: Industrial Internet; IoT: Internet of Things

Amjad Ibrahim, Severin Kacianka, Alexander Pretschner, Charles Hartsell, Gabor Karsai.  2019.  Practical Causal Models for Cyber-Physical Systems. NASA Formal Methods. :211–227.

Unlike faults in classical systems, faults in Cyber-Physical Systems will often be caused by the system's interaction with its physical environment and social context, rendering these faults harder to diagnose. To complicate matters further, knowledge about the behavior and failure modes of a system are often collected in different models. We show how three of those models, namely attack trees, fault trees, and timed failure propagation graphs can be converted into Halpern-Pearl causal models, combined into a single holistic causal model, and analyzed with actual causality reasoning to detect and explain unwanted events. Halpern-Pearl models have several advantages over their source models, particularly that they allow for modeling preemption, consider the non-occurrence of events, and can incorporate additional domain knowledge. Furthermore, such holistic models allow for analysis across model boundaries, enabling detection and explanation of events that are beyond a single model. Our contribution here delineates a semi-automatic process to (1) convert different models into Halpern-Pearl causal models, (2) combine these models into a single holistic model, and (3) reason about system failures. We illustrate our approach with the help of an Unmanned Aerial Vehicle case study.

2018-09-30
B. Potteiger, W. Emfinger, H. Neema, X. Koutosukos, C. Tang, K. Stouffer.  2017.  Evaluating the effects of cyber-attacks on cyber physical systems using a hardware-in-the-loop simulation testbed. 2017 Resilience Week (RWS). :177-183.
Cyber-Physical Systems (CPS) consist of embedded computers with sensing and actuation capability, and are integrated into and tightly coupled with a physical system. Because the physical and cyber components of the system are tightly coupled, cyber-security is important for ensuring the system functions properly and safely. However, the effects of a cyberattack on the whole system may be difficult to determine, analyze, and therefore detect and mitigate. This work presents a model based software development framework integrated with a hardware-in-the-loop (HIL) testbed for rapidly deploying CPS attack experiments. The framework provides the ability to emulate low level attacks and obtain platform specific performance measurements that are difficult to obtain in a traditional simulation environment. The framework improves the cybersecurity design process which can become more informed and customized to the production environment of a CPS. The developed framework is illustrated with a case study of a railway transportation system.