Visible to the public Biblio

Found 2825 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2023-03-03
Krishnamoorthy, R., Arun, S., Sujitha, N., Vijayalakshmi, K.M, Karthiga, S., Thiagarajan, R..  2022.  Proposal of HMAC based Protocol for Message Authenication in Kerberos Authentication Protocol. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1443–1447.
Kerberos protocol is a derivative type of server used for the authentication purpose. Kerberos is a network-based authentication protocol which communicates the tickets from one network to another in a secured manner. Kerberos protocol encrypts the messages and provides mutual authentication. Kerberos uses the symmetric cryptography which uses the public key to strengthen the data confidentiality. The KDS Key Distribution System gives the center of securing the messages. Kerberos has certain disadvantages as it provides public key at both ends. In this proposed approach, the Kerberos are secured by using the HMAC Hash-based Message Authentication Code which is used for the authentication of message for integrity and authentication purpose. It verifies the data by authentication, verifies the e-mail address and message integrity. The computer network and security are authenticated by verifying the user or client. These messages which are transmitted and delivered have to be integrated by authenticating it. Kerberos authentication is used for the verification of a host or user. Authentication is based on the tickets on credentials in a secured way. Kerberos gives faster authentication and uses the unique ticketing system. It supports the authentication delegation with faster efficiency. These encrypt the standard by encrypting the tickets to pass the information.
Ajvazi, Grela, Halili, Festim.  2022.  SOAP messaging to provide quality of protection through Kerberos Authentication. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1–4.
Service-oriented architecture (SOA) is a widely adopted architecture that uses web services, which have become increasingly important in the development and integration of applications. Its purpose is to allow information system technologies to interact by exchanging messages between sender and recipient using the simple object access protocol (SOAP), an XML document, or the HTTP protocol. We will attempt to provide an overview and analysis of standards in the field of web service security, specifically SOAP messages, using Kerberos authentication, which is a computer network security protocol that provides users with high security for requests between two or more hosts located in an unreliable location such as the internet.Everything that has to do with Kerberos has to deal with systems that rely on data authentication.
ISSN: 2157-8702
Aljawarneh, Fatin.  2022.  A Secure Smart Meter Application Framework. 2022 International Conference on Engineering & MIS (ICEMIS). :1–4.
We have proposed a new Smart Meter Application (SMA) Framework. This application registers consumers at utility provider (Electricity), takes the meter reading for electricity and makes billing. The proposed application might offer higher level of flexibility and security, time saving and trustworthiness between consumers and authority offices. It’s expected that the application will be developed by Flutter to support Android and iOS Mobile Operating Systems.
Mhaouch, Ayoub, Elhamzi, Wajdi, Abdelali, Abdessalem Ben, Atri, Mohamed.  2022.  Efficient Serial Architecture for PRESENT Block Cipher. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :45–49.
In recent years, the use of the Internet of Things (IoT) has increased rapidly in different areas. Due to many IoT applications, many limitations have emerged such as power consumption and limited resources. The security of connected devices is becoming more and more a primary need for the reliability of systems. Among other things, power consumption remains an essential constraint with a major impact on the quality of the encryption system. For these, several lightweight cryptography algorithms were proposed and developed. The PRESENT algorithm is one of the lightweight block cipher algorithms that has been proposed for a highly restrictive application. In this paper, we have proposed an efficient hardware serial architecture that uses 16 bits for data path encryption. It uses fewer FPGA resources and achieves higher throughput compared to other existing hardware applications.
Bharathi, C, Annapurna, K Y, Koppad, Deepali, Sudeendra Kumar, K.  2022.  An Analysis of Stream and Block Ciphers for Scan Encryption. 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). :1–5.
Scan-based test methodology is one of the most popular test techniques in VLSI circuits. This methodology increases the testability which in turn improves the fault coverage. For this purpose, the technique uses a chain of scan cells. This becomes a source of attack for an attacker who can observe / control the internal states and use the information for malicious purposes. Hence, security becomes the main concern in the Integrated Circuit (IC) domain since scan chains are the main reason for leakage of confidential information during testing phase. These leakages will help attackers in reverse engineering. Measures against such attacks have to be taken by encrypting the data which flows through the scan chains. Lightweight ciphers can be used for scan chain encryption. In this work, encryption of scan data is done for ISCAS-89 benchmarks and the performance and security properties are evaluated. Lightweight stream and block ciphers are used to perform scan encryption. A comparative analysis between the two techniques is performed in par with the functions related to design cost and security properties.
Gunathilake, Nilupulee A., Al-Dubai, Ahmed, Buchanan, William J., Lo, Owen.  2022.  Electromagnetic Side-Channel Attack Resilience against PRESENT Lightweight Block Cipher. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :51–55.
Lightweight cryptography is a novel diversion from conventional cryptography that targets internet-of-things (IoT) platform due to resource constraints. In comparison, it offers smaller cryptographic primitives such as shorter key sizes, block sizes and lesser energy drainage. The main focus can be seen in algorithm developments in this emerging subject. Thus, verification is carried out based upon theoretical (mathematical) proofs mostly. Among the few available side-channel analysis studies found in literature, the highest percentage is taken by power attacks. PRESENT is a promising lightweight block cipher to be included in IoT devices in the near future. Thus, the emphasis of this paper is on lightweight cryptology, and our investigation shows unavailability of a correlation electromagnetic analysis (CEMA) of it. Hence, in an effort to fill in this research gap, we opted to investigate the capabilities of CEMA against the PRESENT algorithm. This work aims to determine the probability of secret key leakage with a minimum number of electromagnetic (EM) waveforms possible. The process initially started from a simple EM analysis (SEMA) and gradually enhanced up to a CEMA. This paper presents our methodology in attack modelling, current results that indicate a probability of leaking seven bytes of the key and upcoming plans for optimisation. In addition, introductions to lightweight cryptanalysis and theories of EMA are also included.
Jallouli, Ons, Chetto, Maryline, Assad, Safwan El.  2022.  Lightweight Stream Ciphers based on Chaos for Time and Energy Constrained IoT Applications. 2022 11th Mediterranean Conference on Embedded Computing (MECO). :1–5.
The design of efficient and secure cryptographic algorithms is a fundamental problem of cryptography. Due to the tight cost and constrained resources devices such as Radio-Frequency IDentification (RFID), wireless sensors, smart cards, health-care devices, lightweight cryptography has received a great deal of attention. Recent research mainly focused on designing optimized cryptographic algorithms which trade offs between security performance, time consuming, energy consumption and cost. In this paper, we present two chaotic stream ciphers based on chaos and we report the results of a comparative performance evaluation study. Compared to other crypto-systems of the literature, we demonstrate that our designed stream ciphers are suitable for practical secure applications of the Internet of Things (IoT) in a constrained resource environment.
Abdel-Halim, Islam Tharwat, Zayan, Hassan M..  2022.  Evaluating the Performance of Lightweight Block Ciphers for Resource-Constrained IoT Devices. 2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES). :39–44.
In the context of the Internet of Things (IoT), lightweight block ciphers are of vital importance. Due to the nature of the devices involved, traditional security solutions can add overhead and perhaps inhibit the application's objective due to resource limits. Lightweight cryptography is a novel suite of ciphers that aims to provide hardware-constrained devices with a high level of security while maintaining a low physical cost and high performance. In this paper, we are going to evaluate the performance of some of the recently proposed lightweight block ciphers (GIFT-COFB, Romulus, and TinyJAMBU) on the Arduino Due. We analyze data on each algorithm's performance using four metrics: average encryption and decryption execution time; throughput; power consumption; and memory utilization. Among our chosen ciphers, we find that TinyJAMBU and GIFT-COFB are excellent choices for resource-constrained IoT devices.
Sikandar, Hira Shahzadi, Sikander, Usman, Anjum, Adeel, Khan, Muazzam A..  2022.  An Adversarial Approach: Comparing Windows and Linux Security Hardness Using Mitre ATT&CK Framework for Offensive Security. 2022 IEEE 19th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). :022–027.
Operating systems are essential software components for any computer. The goal of computer system manu-facturers is to provide a safe operating system that can resist a range of assaults. APTs (Advanced Persistent Threats) are merely one kind of attack used by hackers to penetrate organisations (APT). Here, we will apply the MITRE ATT&CK approach to analyze the security of Windows and Linux. Using the results of a series of vulnerability tests conducted on Windows 7, 8, 10, and Windows Server 2012, as well as Linux 16.04, 18.04, and its most current version, we can establish which operating system offers the most protection against future assaults. In addition, we have shown adversarial reflection in response to threats. We used ATT &CK framework tools to launch attacks on both platforms.
ISSN: 1949-4106
Agarwal, Shubham, Sable, Arjun, Sawant, Devesh, Kahalekar, Sunil, Hanawal, Manjesh K..  2022.  Threat Detection and Response in Linux Endpoints. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :447–449.
We demonstrate an in-house built Endpoint Detection and Response (EDR) for linux systems using open-sourced tools like Osquery and Elastic. The advantage of building an in-house EDR tools against using commercial EDR tools provides both the knowledge and the technical capability to detect and investigate security incidents. We discuss the architecture of the tools and advantages it offers. Specifically, in our method all the endpoint logs are collected at a common server which we leverage to perform correlation between events happening on different endpoints and automatically detect threats like pivoting and lateral movements. We discuss various attacks that can be detected by our tool.
ISSN: 2155-2509
2023-02-28
Gopalakrishna, Nikhil Krishna, Anandayuvaraj, Dharun, Detti, Annan, Bland, Forrest Lee, Rahaman, Sazzadur, Davis, James C..  2022.  “If security is required”: Engineering and Security Practices for Machine Learning-based IoT Devices. 2022 IEEE/ACM 4th International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT). :1—8.
The latest generation of IoT systems incorporate machine learning (ML) technologies on edge devices. This introduces new engineering challenges to bring ML onto resource-constrained hardware, and complications for ensuring system security and privacy. Existing research prescribes iterative processes for machine learning enabled IoT products to ease development and increase product success. However, these processes mostly focus on existing practices used in other generic software development areas and are not specialized for the purpose of machine learning or IoT devices. This research seeks to characterize engineering processes and security practices for ML-enabled IoT systems through the lens of the engineering lifecycle. We collected data from practitioners through a survey (N=25) and interviews (N=4). We found that security processes and engineering methods vary by company. Respondents emphasized the engineering cost of security analysis and threat modeling, and trade-offs with business needs. Engineers reduce their security investment if it is not an explicit requirement. The threats of IP theft and reverse engineering were a consistent concern among practitioners when deploying ML for IoT devices. Based on our findings, we recommend further research into understanding engineering cost, compliance, and security trade-offs.
Ahmed, Sabrina, Subah, Zareen, Ali, Mohammed Zamshed.  2022.  Cryptographic Data Security for IoT Healthcare in 5G and Beyond Networks. 2022 IEEE Sensors. :1—4.
While 5G Edge Computing along with IoT technology has transformed the future of healthcare data transmission, it presents security vulnerabilities and risks when transmitting patients' confidential information. Currently, there are very few reliable security solutions available for healthcare data that routes through SDN routers in 5G Edge Computing. These solutions do not provide cryptographic security from IoT sensor devices. In this paper, we studied how 5G edge computing integrated with IoT network helps healthcare data transmission for remote medical treatment, explored security risks associated with unsecured data transmission, and finally proposed a cryptographic end-to-end security solution initiated at IoT sensor devices and routed through SDN routers. Our proposed solution with cryptographic security initiated at IoT sensor goes through SDN control plane and data plane in 5G edge computing and provides an end-to-end secured communication from IoT device to doctor's office. A prototype built with two-layer encrypted communication has been lab tested with promising results. This analysis will help future security implementation for eHealth in 5G and beyond networks.
2023-02-24
Ali, Maytham Hakim, Al-Alak, Saif.  2022.  Node Protection using Hiding Identity for IPv6 Based Network. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST). :111—117.
Protecting an identity of IPv6 packet against Denial-of-Service (DoS) attack, depend on the proposed methods of cryptography and steganography. Reliable communication using the security aspect is the most visible issue, particularly in IPv6 network applications. Problems such as DoS attacks, IP spoofing and other kinds of passive attacks are common. This paper suggests an approach based on generating a randomly unique identities for every node. The generated identity is encrypted and hided in the transmitted packets of the sender side. In the receiver side, the received packet verified to identify the source before processed. Also, the paper involves implementing nine experiments that are used to test the proposed scheme. The scheme is based on creating the address of IPv6, then passing it to the logistics map then encrypted by RSA and authenticated by SHA2. In addition, network performance is computed by OPNET modular. The results showed better computation power consumption in case of lost packet, average events, memory and time, and the better results as total memory is 35,523 KB, average events/sec is 250,52, traffic sent is 30,324 packets/sec, traffic received is 27,227 packets/sec, and lose packets is 3,097 packets/sec.
Golam, Mohtasin, Akter, Rubina, Naufal, Revin, Doan, Van-Sang, Lee, Jae-Min, Kim, Dong-Seong.  2022.  Blockchain Inspired Intruder UAV Localization Using Lightweight CNN for Internet of Battlefield Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :342—349.
On the Internet of Battlefield Things (IoBT), unmanned aerial vehicles (UAVs) provide significant operational advantages. However, the exploitation of the UAV by an untrustworthy entity might lead to security violations or possibly the destruction of crucial IoBT network functionality. The IoBT system has substantial issues related to data tampering and fabrication through illegal access. This paper proposes the use of an intelligent architecture called IoBT-Net, which is built on a convolution neural network (CNN) and connected with blockchain technology, to identify and trace illicit UAV in the IoBT system. Data storage on the blockchain ledger is protected from unauthorized access, data tampering, and invasions. Conveniently, this paper presents a low complexity and robustly performed CNN called LRCANet to estimate AOA for object localization. The proposed LRCANet is efficiently designed with two core modules, called GFPU and stacks, which are cleverly organized with regular and point convolution layers, a max pool layer, and a ReLU layer associated with residual connectivity. Furthermore, the effectiveness of LRCANET is evaluated by various network and array configurations, RMSE, and compared with the accuracy and complexity of the existing state-of-the-art. Additionally, the implementation of tailored drone-based consensus is evaluated in terms of three major classes and compared with the other existing consensus.
Rivera, Abel O. Gomez, White, Evan M., Acosta, Jaime C., Tosh, Deepak.  2022.  Enabling Device Trustworthiness for SDN-Enabled Internet -of- Battlefield Things. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—7.
Military networks consist of heterogeneous devices that provide soldiers with real-time terrain and mission intel-ligence. The development of next-generation Software Defined Networks (SDN)-enabled devices is enabling the modernization of traditional military networks. Commonly, traditional military networks take the trustworthiness of devices for granted. How-ever, the recent modernization of military networks introduces cyber attacks such as data and identity spoofing attacks. Hence, it is crucial to ensure the trustworthiness of network traffic to ensure the mission's outcome. This work proposes a Continuous Behavior-based Authentication (CBA) protocol that integrates network traffic analysis techniques to provide robust and efficient network management flow by separating data and control planes in SDN-enabled military networks. The evaluation of the CBA protocol aimed to measure the efficiency of the proposed protocol in realistic military networks. Furthermore, we analyze the overall network overhead of the CBA protocol and its accuracy to detect rogue network traffic data from field devices.
Liu, Dongxin, Abdelzaher, Tarek, Wang, Tianshi, Hu, Yigong, Li, Jinyang, Liu, Shengzhong, Caesar, Matthew, Kalasapura, Deepti, Bhattacharyya, Joydeep, Srour, Nassy et al..  2022.  IoBT-OS: Optimizing the Sensing-to-Decision Loop for the Internet of Battlefield Things. 2022 International Conference on Computer Communications and Networks (ICCCN). :1—10.
Recent concepts in defense herald an increasing degree of automation of future military systems, with an emphasis on accelerating sensing-to-decision loops at the tactical edge, reducing their network communication footprint, and improving the inference quality of intelligent components in the loop. These requirements pose resource management challenges, calling for operating-system-like constructs that optimize the use of limited computational resources at the tactical edge. This paper describes these challenges and presents IoBT-OS, an operating system for the Internet of Battlefield Things that aims to optimize decision latency, improve decision accuracy, and reduce corresponding resource demands on computational and network components. A simple case-study with initial evaluation results is shown from a target tracking application scenario.
Abdelzaher, Tarek, Bastian, Nathaniel D., Jha, Susmit, Kaplan, Lance, Srivastava, Mani, Veeravalli, Venugopal V..  2022.  Context-aware Collaborative Neuro-Symbolic Inference in IoBTs. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1053—1058.
IoBTs must feature collaborative, context-aware, multi-modal fusion for real-time, robust decision-making in adversarial environments. The integration of machine learning (ML) models into IoBTs has been successful at solving these problems at a small scale (e.g., AiTR), but state-of-the-art ML models grow exponentially with increasing temporal and spatial scale of modeled phenomena, and can thus become brittle, untrustworthy, and vulnerable when interpreting large-scale tactical edge data. To address this challenge, we need to develop principles and methodologies for uncertainty-quantified neuro-symbolic ML, where learning and inference exploit symbolic knowledge and reasoning, in addition to, multi-modal and multi-vantage sensor data. The approach features integrated neuro-symbolic inference, where symbolic context is used by deep learning, and deep learning models provide atomic concepts for symbolic reasoning. The incorporation of high-level symbolic reasoning improves data efficiency during training and makes inference more robust, interpretable, and resource-efficient. In this paper, we identify the key challenges in developing context-aware collaborative neuro-symbolic inference in IoBTs and review some recent progress in addressing these gaps.
2023-02-17
Anderegg, Alfred H. Andy, Ferrell, Uma D..  2022.  Assurance Case Along a Safety Continuum. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–10.
The FAA proposes Safety Continuum that recognizes the public expectation for safety outcomes vary with aviation sectors that have different missions, aircraft, and environments. The purpose is to align the rigor of oversight to the public expectations. An aircraft, its variants or derivatives may be used in operations with different expectations. The differences in mission might bring immutable risks for some applications that reuse or revise the original aircraft type design. The continuum enables a more agile design approval process for innovations in the context of a dynamic ecosystems, addressing the creation of variants for different sectors and needs. Since an aircraft type design can be reused in various operations under part 91 or 135 with different mission risks the assurance case will have many branches reflecting the variants and derivatives.This paper proposes a model for the holistic, performance-based, through-life safety assurance case that focuses applicant and oversight alike on achieving the safety outcomes. This paper describes the application of goal-based, technology-neutral features of performance-based assurance cases extending the philosophy of UL 4600, to the Safety Continuum. This paper specifically addresses component reuse including third-party vehicle modifications and changes to operational concept or eco-system. The performance-based assurance argument offers a way to combine the design approval more seamlessly with the oversight functions by focusing all aspects of the argument and practice together to manage the safety outcomes. The model provides the context to assure mitigated risk are consistent with an operation’s place on the safety continuum, while allowing the applicant to reuse parts of the assurance argument to innovate variants or derivatives. The focus on monitoring performance to constantly verify the safety argument complements compliance checking as a way to assure products are "fit-for-use". The paper explains how continued operational safety becomes a natural part of monitoring the assurance case for growing variety in a product line by accounting for the ecosystem changes. Such a model could be used with the Safety Continuum to promote applicant and operator accountability delivering the expected safety outcomes.
ISSN: 2155-7209
Ferrell, Uma D., Anderegg, Alfred H. Andy.  2022.  Holistic Assurance Case for System-of-Systems. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–9.
Aviation is a highly sophisticated and complex System-of-Systems (SoSs) with equally complex safety oversight. As novel products with autonomous functions and interactions between component systems are adopted, the number of interdependencies within and among the SoS grows. These interactions may not always be obvious. Understanding how proposed products (component systems) fit into the context of a larger SoS is essential to promote the safe use of new as well as conventional technology.UL 4600, is a Standard for Safety for the Evaluation of Autonomous Products specifically written for completely autonomous Load vehicles. The goal-based, technology-neutral features of this standard make it adaptable to other industries and applications.This paper, using the philosophy of UL 4600, gives guidance for creating an assurance case for products in an SoS context. An assurance argument is a cogent structured argument concluding that an autonomous aircraft system possesses all applicable through-life performance and safety properties. The assurance case process can be repeated at each level in the SoS: aircraft, aircraft system, unmodified components, and modified components. The original Equipment Manufacturer (OEM) develops the assurance case for the whole aircraft envisioned in the type certification process. Assurance cases are continuously validated by collecting and analyzing Safety Performance Indicators (SPIs). SPIs provide predictive safety information, thus offering an opportunity to improve safety by preventing incidents and accidents. Continuous validation is essential for risk-based approval of autonomously evolving (dynamic) systems, learning systems, and new technology. System variants, derivatives, and components are captured in a subordinate assurance case by their developer. These variants of the assurance case inherently reflect the evolution of the vehicle-level derivatives and options in the context of their specific target ecosystem. These subordinate assurance cases are nested under the argument put forward by the OEM of components and aircraft, for certification credit.It has become a common practice in aviation to address design hazards through operational mitigations. It is also common for hazards noted in an aircraft component system to be mitigated within another component system. Where a component system depends on risk mitigation in another component of the SoS, organizational responsibilities must be stated explicitly in the assurance case. However, current practices do not formalize accounting for these dependencies by the parties responsible for design; consequently, subsequent modifications are made without the benefit of critical safety-related information from the OEMs. The resulting assurance cases, including 3rd party vehicle modifications, must be scrutinized as part of the holistic validation process.When changes are made to a product represented within the assurance case, their impact must be analyzed and reflected in an updated assurance case. An OEM can facilitate this by integrating affected assurance cases across their customer’s supply chains to ensure their validity. The OEM is expected to exercise the sphere-of-control over their product even if it includes outsourced components. Any organization that modifies a product (with or without assurance argumentation information from other suppliers) is accountable for validating the conditions for any dependent mitigations. For example, the OEM may manage the assurance argumentation by identifying requirements and supporting SPI that must be applied in all component assurance cases. For their part, component assurance cases must accommodate all spheres-of-control that mitigate the risks they present in their respective contexts. The assurance case must express how interdependent mitigations will collectively assure the outcome. These considerations are much more than interface requirements and include explicit hazard mitigation dependencies between SoS components. A properly integrated SoS assurance case reflects a set of interdependent systems that could be independently developed..Even in this extremely interconnected environment, stakeholders must make accommodations for the independent evolution of products in a manner that protects proprietary information, domain knowledge, and safety data. The collective safety outcome for the SoS is based on the interdependence of mitigations by each constituent component and could not be accomplished by any single component. This dependency must be explicit in the assurance case and should include operational mitigations predicated on people and processes.Assurance cases could be used to gain regulatory approval of conventional and new technology. They can also serve to demonstrate consistency with a desired level of safety, especially in SoSs whose existing standards may not be adequate. This paper also provides guidelines for preserving alignment between component assurance cases along a product supply chain, and the respective SoSs that they support. It shows how assurance is a continuous process that spans product evolution through the monitoring of interdependent requirements and SPI. The interdependency necessary for a successful assurance case encourages stakeholders to identify and formally accept critical interconnections between related organizations. The resulting coordination promotes accountability for safety through increased awareness and the cultivation of a positive safety culture.
ISSN: 2155-7209
Svadasu, Grandhi, Adimoolam, M..  2022.  Spam Detection in Social Media using Artificial Neural Network Algorithm and comparing Accuracy with Support Vector Machine Algorithm. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–5.
Aim: To bring off the spam detection in social media using Support Vector Machine (SVM) algorithm and compare accuracy with Artificial Neural Network (ANN) algorithm sample size of dataset is 5489, Initially the dataset contains several messages which includes spam and ham messages 80% messages are taken as training and 20% of messages are taken as testing. Materials and Methods: Classification was performed by KNN algorithm (N=10) for spam detection in social media and the accuracy was compared with SVM algorithm (N=10) with G power 80% and alpha value 0.05. Results: The value obtained in terms of accuracy was identified by ANN algorithm (98.2%) and for SVM algorithm (96.2%) with significant value 0.749. Conclusion: The accuracy of detecting spam using the ANN algorithm appears to be slightly better than the SVM algorithm.
Sasikala, V., Mounika, K., Sravya Tulasi, Y., Gayathri, D., Anjani, M..  2022.  Performance evaluation of Spam and Non-Spam E-mail detection using Machine Learning algorithms. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :1359–1365.
All of us are familiar with the importance of social media in facilitating communication. e-mail is one of the safest social media platforms for online communications and information transfer over the internet. As of now, many people rely on email or communications provided by strangers. Because everyone may send emails or a message, spammers have a great opportunity to compose spam messages about our many hobbies and passions, interests, and concerns. Our internet speeds are severely slowed down by spam, which also collects personal information like our phone numbers from our contact list. There is a lot of work involved in identifying these fraudsters and also identifying spam content. Email spam refers to the practice of sending large numbers of messages via email. The recipient bears the bulk of the cost of spam, therefore it's practically free advertising. Spam email is a form of commercial advertising for hackers that is financially viable due of the low cost of sending email. Anti-spam filters have become increasingly important as the volume of unwanted bulk e-mail (also spamming) grows. We can define a message, if it is a spam or not using this proposed model. Machine learning algorithms can be discussed in detail, and our data sets will be used to test them all, with the goal of identifying the one that is most accurate and precise in its identification of email spam. Society of machine learning techniques for detecting unsolicited mass email and spam.
Das, Lipsa, Ahuja, Laxmi, Pandey, Adesh.  2022.  Analysis of Twitter Spam Detection Using Machine Learning Approach. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :764–769.
Now a days there are many online social networks (OSN) which are very popular among Internet users and use this platform for finding new connections, sharing their activities and thoughts. Twitter is such social media platforms which is very popular among this users. Survey says, it has more than 310 million monthly users who are very active and post around 500+ million tweets in a day and this attracts, the spammer or cyber-criminal to misuse this platform for their malicious benefits. Product advertisement, phishing true users, pornography propagation, stealing the trending news, sharing malicious link to get the victims for making money are the common example of the activities of spammers. In Aug-2014, Twitter made public that 8.5% of its active Twitter users (monthly) that is approx. 23+ million users, who have automatically contacted their servers for regular updates. Thus for a spam free environment in twitter, it is greatly required to detect and filter these spammer from the legitimate users. Here in our research paper, effectiveness & features of twitter spam detection, various methods are summarized with their benefits and limitations are presented. [1]
Mohammadi, Ali Akbar, Hussain, Rasheed, Oracevic, Alma, Kazmi, Syed Muhammad Ahsan Raza, Hussain, Fatima, Aloqaily, Moayad, Son, Junggab.  2022.  A Novel TCP/IP Header Hijacking Attack on SDN. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Middlebox is primarily used in Software-Defined Network (SDN) to enhance operational performance, policy compliance, and security operations. Therefore, security of the middlebox itself is essential because incorrect use of the middlebox can cause severe cybersecurity problems for SDN. Existing attacks against middleboxes in SDN (for instance, middleboxbypass attack) use methods such as cloned tags from the previous packets to justify that the middlebox has processed the injected packet. Flowcloak as the latest solution to defeat such an attack creates a defence using a tag by computing the hash of certain parts of the packet header. However, the security mechanisms proposed to mitigate these attacks are compromise-able since all parts of the packet header can be imitated, leaving the middleboxes insecure. To demonstrate our claim, we introduce a novel attack against SDN middleboxes by hijacking TCP/IP headers. The attack uses crafted TCP/IP headers to receive the tags and signatures and successfully bypasses the middleboxes.
Alam, Mahfooz, Shahid, Mohammad, Mustajab, Suhel.  2022.  Security Oriented Deadline Aware Workflow Allocation Strategy for Infrastructure as a Service Clouds. 2022 3rd International Conference on Computation, Automation and Knowledge Management (ICCAKM). :1–6.
Cloud computing is a model of service provisioning in heterogeneous distributed systems that encourages many researchers to explore its benefits and drawbacks in executing workflow applications. Recently, high-quality security protection has been a new challenge in workflow allocation. Different tasks may and may not have varied security demands, security overhead may vary for different virtual machines (VMs) at which the task is assigned. This paper proposes a Security Oriented Deadline-Aware workflow allocation (SODA) strategy in an IaaS cloud environment to minimize the risk probability of the workflow tasks while considering the deadline met in a deterministic environment. SODA picks out the task based on the highest security upward rank and assigns the selected task to the trustworthy VMs. SODA tries to simultaneously satisfy each task’s security demand and deadline at the maximum possible level. The simulation studies show that SODA outperforms the HEFT strategy on account of the risk probability of the cloud system on scientific workflow, namely CyberShake.
Alyas, Tahir, Ateeq, Karamath, Alqahtani, Mohammed, Kukunuru, Saigeeta, Tabassum, Nadia, Kamran, Rukshanda.  2022.  Security Analysis for Virtual Machine Allocation in Cloud Computing. 2022 International Conference on Cyber Resilience (ICCR). :1–9.
A huge number of cloud users and cloud providers are threatened of security issues by cloud computing adoption. Cloud computing is a hub of virtualization that provides virtualization-based infrastructure over physically connected systems. With the rapid advancement of cloud computing technology, data protection is becoming increasingly necessary. It's important to weigh the advantages and disadvantages of moving to cloud computing when deciding whether to do so. As a result of security and other problems in the cloud, cloud clients need more time to consider transitioning to cloud environments. Cloud computing, like any other technology, faces numerous challenges, especially in terms of cloud security. Many future customers are wary of cloud adoption because of this. Virtualization Technologies facilitates the sharing of recourses among multiple users. Cloud services are protected using various models such as type-I and type-II hypervisors, OS-level, and unikernel virtualization but also offer a variety of security issues. Unfortunately, several attacks have been built in recent years to compromise the hypervisor and take control of all virtual machines running above it. It is extremely difficult to reduce the size of a hypervisor due to the functions it offers. It is not acceptable for a safe device design to include a large hypervisor in the Trusted Computing Base (TCB). Virtualization is used by cloud computing service providers to provide services. However, using these methods entails handing over complete ownership of data to a third party. This paper covers a variety of topics related to virtualization protection, including a summary of various solutions and risk mitigation in VMM (virtual machine monitor). In this paper, we will discuss issues possible with a malicious virtual machine. We will also discuss security precautions that are required to handle malicious behaviors. We notice the issues of investigating malicious behaviors in cloud computing, give the scientific categorization and demonstrate the future headings. We've identified: i) security specifications for virtualization in Cloud computing, which can be used as a starting point for securing Cloud virtual infrastructure, ii) attacks that can be conducted against Cloud virtual infrastructure, and iii) security solutions to protect the virtualization environment from DDOS attacks.