Visible to the public Biblio

Found 1398 results

Filters: First Letter Of Last Name is F  [Clear All Filters]
2021-05-18
Fidalgo, Ana, Medeiros, Ibéria, Antunes, Paulo, Neves, Nuno.  2020.  Towards a Deep Learning Model for Vulnerability Detection on Web Application Variants. 2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :465–476.
Reported vulnerabilities have grown significantly over the recent years, with SQL injection (SQLi) being one of the most prominent, especially in web applications. For these, such increase can be explained by the integration of multiple software parts (e.g., various plugins and modules), often developed by different organizations, composing thus web application variants. Machine Learning has the potential to be a great ally on finding vulnerabilities, aiding experts by reducing the search space or even by classifying programs on their own. However, previous work usually does not consider SQLi or utilizes techniques hard to scale. Moreover, there is a clear gap in vulnerability detection with machine learning for PHP, the most popular server-side language for web applications. This paper presents a Deep Learning model able to classify PHP slices as vulnerable (or not) to SQLi. As slices can belong to any variant, we propose the use of an intermediate language to represent the slices and interpret them as text, resorting to well-studied Natural Language Processing (NLP) techniques. Preliminary results of the use of the model show that it can discover SQLi, helping programmers and precluding attacks that would eventually cost a lot to repair.
Morapitiya, Sumali S., Furqan Ali, Mohammad, Rajkumar, Samikkannu, Wijayasekara, Sanika K., Jayakody, Dushantha Nalin K., Weerasuriya, R.U..  2020.  A SLIPT-assisted Visible Light Communication Scheme. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :368–375.
Simultaneous Wireless Information and Power Transfer (SWIPT) technique is introduced in Radio Frequency (RF) communication to carry both information and power in same medium. In this approach, the energy can be harvested while decoding the information carries in an RF wave. Recently, the same concept applied in Visible Light Communication (VLC) namely Simultaneous Light Wave Information and Power Transfer (SLIPT), which is highly recommended in an indoor applications to overcome the problem facing in RF communication. Thus, SLIPT is introduced to transmit the power through a Light Emitting Diode (LED) luminaries. In this work, we compare both SWIPT and SLIPT technologies and realize SLIPT technology archives increased performance in terms of the amount of harvested energy, outage probability and error rate performance.
2021-05-13
Sun, Zhichuang, Feng, Bo, Lu, Long, Jha, Somesh.  2020.  OAT: Attesting Operation Integrity of Embedded Devices. 2020 IEEE Symposium on Security and Privacy (SP). :1433—1449.

Due to the wide adoption of IoT/CPS systems, embedded devices (IoT frontends) become increasingly connected and mission-critical, which in turn has attracted advanced attacks (e.g., control-flow hijacks and data-only attacks). Unfortunately, IoT backends (e.g., remote controllers or in-cloud services) are unable to detect if such attacks have happened while receiving data, service requests, or operation status from IoT devices (remotely deployed embedded devices). As a result, currently, IoT backends are forced to blindly trust the IoT devices that they interact with.To fill this void, we first formulate a new security property for embedded devices, called "Operation Execution Integrity" or OEI. We then design and build a system, OAT, that enables remote OEI attestation for ARM-based bare-metal embedded devices. Our formulation of OEI captures the integrity of both control flow and critical data involved in an operation execution. Therefore, satisfying OEI entails that an operation execution is free of unexpected control and data manipulations, which existing attestation methods cannot check. Our design of OAT strikes a balance between prover's constraints (embedded devices' limited computing power and storage) and verifier's requirements (complete verifiability and forensic assistance). OAT uses a new control-flow measurement scheme, which enables lightweight and space-efficient collection of measurements (97% space reduction from the trace-based approach). OAT performs the remote control-flow verification through abstract execution, which is fast and deterministic. OAT also features lightweight integrity checking for critical data (74% less instrumentation needed than previous work). Our security analysis shows that OAT allows remote verifiers or IoT backends to detect both controlflow hijacks and data-only attacks that affect the execution of operations on IoT devices. In our evaluation using real embedded programs, OAT incurs a runtime overhead of 2.7%.

Sardar, Muhammad Usama, Quoc, Do Le, Fetzer, Christof.  2020.  Towards Formalization of Enhanced Privacy ID (EPID)-based Remote Attestation in Intel SGX. 2020 23rd Euromicro Conference on Digital System Design (DSD). :604—607.

Vulnerabilities in privileged software layers have been exploited with severe consequences. Recently, Trusted Execution Environments (TEEs) based technologies have emerged as a promising approach since they claim strong confidentiality and integrity guarantees regardless of the trustworthiness of the underlying system software. In this paper, we consider one of the most prominent TEE technologies, referred to as Intel Software Guard Extensions (SGX). Despite many formal approaches, there is still a lack of formal proof of some critical processes of Intel SGX, such as remote attestation. To fill this gap, we propose a fully automated, rigorous, and sound formal approach to specify and verify the Enhanced Privacy ID (EPID)-based remote attestation in Intel SGX under the assumption that there are no side-channel attacks and no vulnerabilities inside the enclave. The evaluation indicates that the confidentiality of attestation keys is preserved against a Dolev-Yao adversary in this technology. We also present a few of the many inconsistencies found in the existing literature on Intel SGX attestation during formal specification.

Fei, Wanghao, Moses, Paul, Davis, Chad.  2020.  Identification of Smart Grid Attacks via State Vector Estimator and Support Vector Machine Methods. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—6.

In recent times, an increasing amount of intelligent electronic devices (IEDs) are being deployed to make power systems more reliable and economical. While these technologies are necessary for realizing a cyber-physical infrastructure for future smart power grids, they also introduce new vulnerabilities in the grid to different cyber-attacks. Traditional methods such as state vector estimation (SVE) are not capable of identifying cyber-attacks while the geometric information is also injected as an attack vector. In this paper, a machine learning based smart grid attack identification method is proposed. The proposed method is carried out by first collecting smart grid power flow data for machine learning training purposes which is later used to classify the attacks. The performance of both the proposed SVM method and the traditional SVE method are validated on IEEE 14, 30, 39, 57 and 118 bus systems, and the performance regarding the scale of the power system is evaluated. The results show that the SVM-based method performs better than the SVE-based in attack identification over a much wider scale of power systems.

Feng, Liu, Jie, Yang, Deli, Kong, Jiayin, Qi.  2020.  A Secure Multi-party Computation Protocol Combines Pederson Commitment with Schnorr Signature for Blockchain. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :57—63.

Blockchain is being pursued by a growing number of people with its characteristics of openness, transparency, and decentralization. At the same time, how to secure privacy protection in such an open and transparent ledger is an urgent issue to be solved for deep study. Therefore, this paper proposes a protocol based on Secure multi-party computation, which can merge and sign different transaction messages under the anonymous condition by using Pedersen commitment and Schnorr Signature. Through the rationality proof and security analysis, this paper demonstrates the private transaction is safe under the semi-honest model. And its computational cost is less than the equivalent multi-signature model. The research has made some innovative contributions to the privacy computing theory.

Aghabagherloo, Alireza, Mohajeri, Javad, Salmasizadeh, Mahmoud, Feghhi, Mahmood Mohassel.  2020.  An Efficient Anonymous Authentication Scheme Using Registration List in VANETs. 2020 28th Iranian Conference on Electrical Engineering (ICEE). :1—5.

Nowadays, Vehicular Ad hoc Networks (VANETs) are popularly known as they can reduce traffic and road accidents. These networks need several security requirements, such as anonymity, data authentication, confidentiality, traceability and cancellation of offending users, unlinkability, integrity, undeniability and access control. Authentication of the data and sender are most important security requirements in these networks. So many authentication schemes have been proposed up to now. One of the well-known techniques to provide users authentication in these networks is the authentication based on the smartcard (ASC). In this paper, we propose an ASC scheme that not only provides necessary security requirements such as anonymity, traceability and unlinkability in the VANETs but also is more efficient than the other schemes in the literatures.

Feng, Xiaohua, Feng, Yunzhong, Dawam, Edward Swarlat.  2020.  Artificial Intelligence Cyber Security Strategy. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :328—333.
Nowadays, STEM (science, technology, engineering and mathematics) have never been treated so seriously before. Artificial Intelligence (AI) has played an important role currently in STEM. Under the 2020 COVID-19 pandemic crisis, coronavirus disease across over the world we are living in. Every government seek advices from scientist before making their strategic plan. Most of countries collect data from hospitals (and care home and so on in the society), carried out data analysis, using formula to make some AI models, to predict the potential development patterns, in order to make their government strategy. AI security become essential. If a security attack make the pattern wrong, the model is not a true prediction, that could result in thousands life loss. The potential consequence of this non-accurate forecast would be even worse. Therefore, take security into account during the forecast AI modelling, step-by-step data governance, will be significant. Cyber security should be applied during this kind of prediction process using AI deep learning technology and so on. Some in-depth discussion will follow.AI security impact is a principle concern in the world. It is also significant for both nature science and social science researchers to consider in the future. In particular, because many services are running on online devices, security defenses are essential. The results should have properly data governance with security. AI security strategy should be up to the top priority to influence governments and their citizens in the world. AI security will help governments' strategy makers to work reasonably balancing between technologies, socially and politics. In this paper, strategy related challenges of AI and Security will be discussed, along with suggestions AI cyber security and politics trade-off consideration from an initial planning stage to its near future further development.
Fernandes, Steven, Raj, Sunny, Ewetz, Rickard, Pannu, Jodh Singh, Kumar Jha, Sumit, Ortiz, Eddy, Vintila, Iustina, Salter, Margaret.  2020.  Detecting Deepfake Videos using Attribution-Based Confidence Metric. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :1250–1259.
Recent advances in generative adversarial networks have made detecting fake videos a challenging task. In this paper, we propose the application of the state-of-the-art attribution based confidence (ABC) metric for detecting deepfake videos. The ABC metric does not require access to the training data or training the calibration model on the validation data. The ABC metric can be used to draw inferences even when only the trained model is available. Here, we utilize the ABC metric to characterize whether a video is original or fake. The deep learning model is trained only on original videos. The ABC metric uses the trained model to generate confidence values. For, original videos, the confidence values are greater than 0.94.
Peck, Sarah Marie, Khan, Mohammad Maifi Hasan, Fahim, Md Abdullah Al, Coman, Emil N, Jensen, Theodore, Albayram, Yusuf.  2020.  Who Would Bob Blame? Factors in Blame Attribution in Cyberattacks Among the Non-Adopting Population in the Context of 2FA 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :778–789.
This study focuses on identifying the factors contributing to a sense of personal responsibility that could improve understanding of insecure cybersecurity behavior and guide research toward more effective messaging targeting non-adopting populations. Towards that, we ran a 2(account type) x2(usage scenario) x2(message type) between-group study with 237 United States adult participants on Amazon MTurk, and investigated how the non-adopting population allocates blame, and under what circumstances they blame the end user among the parties who hold responsibility: the software companies holding data, the attackers exposing data, and others. We find users primarily hold service providers accountable for breaches but they feel the same companies should not enforce stronger security policies on users. Results indicate that people do hold end users accountable for their behavior in the event of a breach, especially when the users' behavior affects others. Implications of our findings in risk communication is discussed in the paper.
Luo, Yukui, Gongye, Cheng, Ren, Shaolei, Fei, Yunsi, Xu, Xiaolin.  2020.  Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs. 2020 IEEE 38th International Conference on Computer Design (ICCD). :545–552.
With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.
2021-05-05
Nienhuis, Kyndylan, Joannou, Alexandre, Bauereiss, Thomas, Fox, Anthony, Roe, Michael, Campbell, Brian, Naylor, Matthew, Norton, Robert M., Moore, Simon W., Neumann, Peter G. et al..  2020.  Rigorous engineering for hardware security: Formal modelling and proof in the CHERI design and implementation process. 2020 IEEE Symposium on Security and Privacy (SP). :1003—1020.

The root causes of many security vulnerabilities include a pernicious combination of two problems, often regarded as inescapable aspects of computing. First, the protection mechanisms provided by the mainstream processor architecture and C/C++ language abstractions, dating back to the 1970s and before, provide only coarse-grain virtual-memory-based protection. Second, mainstream system engineering relies almost exclusively on test-and-debug methods, with (at best) prose specifications. These methods have historically sufficed commercially for much of the computer industry, but they fail to prevent large numbers of exploitable bugs, and the security problems that this causes are becoming ever more acute.In this paper we show how more rigorous engineering methods can be applied to the development of a new security-enhanced processor architecture, with its accompanying hardware implementation and software stack. We use formal models of the complete instruction-set architecture (ISA) at the heart of the design and engineering process, both in lightweight ways that support and improve normal engineering practice - as documentation, in emulators used as a test oracle for hardware and for running software, and for test generation - and for formal verification. We formalise key intended security properties of the design, and establish that these hold with mechanised proof. This is for the same complete ISA models (complete enough to boot operating systems), without idealisation.We do this for CHERI, an architecture with hardware capabilities that supports fine-grained memory protection and scalable secure compartmentalisation, while offering a smooth adoption path for existing software. CHERI is a maturing research architecture, developed since 2010, with work now underway on an Arm industrial prototype to explore its possible adoption in mass-market commercial processors. The rigorous engineering work described here has been an integral part of its development to date, enabling more rapid and confident experimentation, and boosting confidence in the design.

2021-05-03
Luo, Lan, Zhang, Yue, Zou, Cliff, Shao, Xinhui, Ling, Zhen, Fu, Xinwen.  2020.  On Runtime Software Security of TrustZone-M Based IoT Devices. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–7.
Internet of Things (IoT) devices have been increasingly integrated into our daily life. However, such smart devices suffer a broad attack surface. Particularly, attacks targeting the device software at runtime are challenging to defend against if IoT devices use resource-constrained microcontrollers (MCUs). TrustZone-M, a TrustZone extension for MCUs, is an emerging security technique fortifying MCU based IoT devices. This paper presents the first security analysis of potential software security issues in TrustZone-M enabled MCUs. We explore the stack-based buffer overflow (BOF) attack for code injection, return-oriented programming (ROP) attack, heap-based BOF attack, format string attack, and attacks against Non-secure Callable (NSC) functions in the context of TrustZone-M. We validate these attacks using the Microchip SAM L11 MCU, which uses the ARM Cortex-M23 processor with the TrustZone-M technology. Strategies to mitigate these software attacks are also discussed.
2021-04-29
Hayes, J. Huffman, Payne, J., Essex, E., Cole, K., Alverson, J., Dekhtyar, A., Fang, D., Bernosky, G..  2020.  Towards Improved Network Security Requirements and Policy: Domain-Specific Completeness Analysis via Topic Modeling. 2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE). :83—86.

Network security policies contain requirements - including system and software features as well as expected and desired actions of human actors. In this paper, we present a framework for evaluation of textual network security policies as requirements documents to identify areas for improvement. Specifically, our framework concentrates on completeness. We use topic modeling coupled with expert evaluation to learn the complete list of important topics that should be addressed in a network security policy. Using these topics as a checklist, we evaluate (students) a collection of network security policies for completeness, i.e., the level of presence of these topics in the text. We developed three methods for topic recognition to identify missing or poorly addressed topics. We examine network security policies and report the results of our analysis: preliminary success of our approach.

Fischer, A., Janneck, J., Kussmaul, J., Krätzschmar, N., Kerschbaum, F., Bodden, E..  2020.  PASAPTO: Policy-aware Security and Performance Trade-off Analysis–Computation on Encrypted Data with Restricted Leakage. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :230—245.

This work considers the trade-off between security and performance when revealing partial information about encrypted data computed on. The focus of our work is on information revealed through control flow side-channels when executing programs on encrypted data. We use quantitative information flow to measure security, running time to measure performance and program transformation techniques to alter the trade-off between the two. Combined with information flow policies, we perform a policy-aware security and performance trade-off (PASAPTO) analysis. We formalize the problem of PASAPTO analysis as an optimization problem, prove the NP-hardness of the corresponding decision problem and present two algorithms solving it heuristically. We implemented our algorithms and combined them with the Dataflow Authentication (DFAuth) approach for outsourcing sensitive computations. Our DFAuth Trade-off Analyzer (DFATA) takes Java Bytecode operating on plaintext data and an associated information flow policy as input. It outputs semantically equivalent program variants operating on encrypted data which are policy-compliant and approximately Pareto-optimal with respect to leakage and performance. We evaluated DFATA in a commercial cloud environment using Java programs, e.g., a decision tree program performing machine learning on medical data. The decision tree variant with the worst performance is 357% slower than the fastest variant. Leakage varies between 0% and 17% of the input.

Fejrskov, M., Pedersen, J. M., Vasilomanolakis, E..  2020.  Cyber-security research by ISPs: A NetFlow and DNS Anonymization Policy. :1—8.

Internet Service Providers (ISPs) have an economic and operational interest in detecting malicious network activity relating to their subscribers. However, it is unclear what kind of traffic data an ISP has available for cyber-security research, and under which legal conditions it can be used. This paper gives an overview of the challenges posed by legislation and of the data sources available to a European ISP. DNS and NetFlow logs are identified as relevant data sources and the state of the art in anonymization and fingerprinting techniques is discussed. Based on legislation, data availability and privacy considerations, a practically applicable anonymization policy is presented.

Farahmandian, S., Hoang, D. B..  2020.  A Policy-based Interaction Protocol between Software Defined Security Controller and Virtual Security Functions. 2020 4th Cyber Security in Networking Conference (CSNet). :1—8.

Cloud, Software-Defined Networking (SDN), and Network Function Virtualization (NFV) technologies have introduced a new era of cybersecurity threats and challenges. To protect cloud infrastructure, in our earlier work, we proposed Software Defined Security Service (SDS2) to tackle security challenges centered around a new policy-based interaction model. The security architecture consists of three main components: a Security Controller, Virtual Security Functions (VSF), and a Sec-Manage Protocol. However, the security architecture requires an agile and specific protocol to transfer interaction parameters and security messages between its components where OpenFlow considers mainly as network routing protocol. So, The Sec-Manage protocol has been designed specifically for obtaining policy-based interaction parameters among cloud entities between the security controller and its VSFs. This paper focuses on the design and the implementation of the Sec-Manage protocol and demonstrates its use in setting, monitoring, and conveying relevant policy-based interaction security parameters.

2021-04-27
Yang, Y., Lu, K., Cheng, H., Fu, M., Li, Z..  2020.  Time-controlled Regular Language Search over Encrypted Big Data. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:1041—1045.

The rapid development of cloud computing and the arrival of the big data era make the relationship between users and cloud closer. Cloud computing has powerful data computing and data storage capabilities, which can ubiquitously provide users with resources. However, users do not fully trust the cloud server's storage services, so lots of data is encrypted and uploaded to the cloud. Searchable encryption can protect the confidentiality of data and provide encrypted data retrieval functions. In this paper, we propose a time-controlled searchable encryption scheme with regular language over encrypted big data, which provides flexible search pattern and convenient data sharing. Our solution allows users with data's secret keys to generate trapdoors by themselves. And users without data's secret keys can generate trapdoors with the help of a trusted third party without revealing the data owner's secret key. Our system uses a time-controlled mechanism to collect keywords queried by users and ensures that the querying user's identity is not directly exposed. The obtained keywords are the basis for subsequent big data analysis. We conducted a security analysis of the proposed scheme and proved that the scheme is secure. The simulation experiment and comparison of our scheme show that the system has feasible efficiency.

Syafalni, I., Fadhli, H., Utami, W., Dharma, G. S. A., Mulyawan, R., Sutisna, N., Adiono, T..  2020.  Cloud Security Implementation using Homomorphic Encryption. 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). :341—345.

With the advancement of computing and communication technologies, data transmission in the internet are getting bigger and faster. However, it is necessary to secure the data to prevent fraud and criminal over the internet. Furthermore, most of the data related to statistics requires to be analyzed securely such as weather data, health data, financial and other services. This paper presents an implementation of cloud security using homomorphic encryption for data analytic in the cloud. We apply the homomorphic encryption that allows the data to be processed without being decrypted. Experimental results show that, for the polynomial degree 26, 28, and 210, the total executions are 2.2 ms, 4.4 ms, 25 ms per data, respectively. The implementation is useful for big data security such as for environment, financial and hospital data analytics.

Javid, T., Faris, M., Beenish, H., Fahad, M..  2020.  Cybersecurity and Data Privacy in the Cloudlet for Preliminary Healthcare Big Data Analytics. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.

In cyber physical systems, cybersecurity and data privacy are among most critical considerations when dealing with communications, processing, and storage of data. Geospatial data and medical data are examples of big data that require seamless integration with computational algorithms as outlined in Industry 4.0 towards adoption of fourth industrial revolution. Healthcare Industry 4.0 is an application of the design principles of Industry 4.0 to the medical domain. Mobile applications are now widely used to accomplish important business functions in almost all industries. These mobile devices, however, are resource poor and proved insufficient for many important medical applications. Resource rich cloud services are used to augment poor mobile device resources for data and compute intensive applications in the mobile cloud computing paradigm. However, the performance of cloud services is undesirable for data-intensive, latency-sensitive mobile applications due increased hop count between the mobile device and the cloud server. Cloudlets are virtual machines hosted in server placed nearby the mobile device and offer an attractive alternative to the mobile cloud computing in the form of mobile edge computing. This paper outlines cybersecurity and data privacy aspects for communications of measured patient data from wearable wireless biosensors to nearby cloudlet host server in order to facilitate the cloudlet based preliminary and essential complex analytics for the medical big data.

Wagner, T. J., Ford, T. C..  2020.  Metrics to Meet Security Privacy Requirements with Agile Software Development Methods in a Regulated Environment. 2020 International Conference on Computing, Networking and Communications (ICNC). :17—23.

This work examines metrics that can be used to measure the ability of agile software development methods to meet security and privacy requirements of communications applications. Many implementations of communication protocols, including those in vehicular networks, occur within regulated environments where agile development methods are traditionally discouraged. We propose a framework and metrics to measure adherence to security, quality and software effectiveness regulations if developers desire the cost and schedule benefits of agile methods. After providing an overview of specific challenges that a regulated environment imposes on communications software development, we proceed to examine the 12 agile principles and how they relate to a regulatory environment. From this review we identify two metrics to measure performance of three key regulatory attributes of software for communications applications, and then recommend an approach of either tools, agile methods or DevOps that is best positioned to satisfy its regulated environment attributes. By considering the recommendations in this paper, managers of software-dominant communications programs in a regulated environment can gain insight into leveraging the benefits of agile methods.

Giannoutakis, K. M., Spathoulas, G., Filelis-Papadopoulos, C. K., Collen, A., Anagnostopoulos, M., Votis, K., Nijdam, N. A..  2020.  A Blockchain Solution for Enhancing Cybersecurity Defence of IoT. 2020 IEEE International Conference on Blockchain (Blockchain). :490—495.

The growth of IoT devices during the last decade has led to the development of smart ecosystems, such as smart homes, prone to cyberattacks. Traditional security methodologies support to some extend the requirement for preserving privacy and security of such deployments, but their centralized nature in conjunction with low computational capabilities of smart home gateways make such approaches not efficient. Last achievements on blockchain technologies allowed the use of such decentralized architectures to support cybersecurity defence mechanisms. In this work, a blockchain framework is presented to support the cybersecurity mechanisms of smart homes installations, focusing on the immutability of users and devices that constitute such environments. The proposed methodology provides also the appropriate smart contracts support for ensuring the integrity of the smart home gateway and IoT devices, as well as the dynamic and immutable management of blocked malicious IPs. The framework has been deployed on a real smart home environment demonstrating its applicability and efficiency.

Damis, H. A., Shehada, D., Fachkha, C., Gawanmeh, A., Al-Karaki, J. N..  2020.  A Microservices Architecture for ADS-B Data Security Using Blockchain. 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS). :1—4.

The use of Automatic Dependent Surveillance - Broadcast (ADS-B) for aircraft tracking and flight management operations is widely used today. However, ADS-B is prone to several cyber-security threats due to the lack of data authentication and encryption. Recently, Blockchain has emerged as new paradigm that can provide promising solutions in decentralized systems. Furthermore, software containers and Microservices facilitate the scaling of Blockchain implementations within cloud computing environment. When fused together, these technologies could help improve Air Traffic Control (ATC) processing of ADS-B data. In this paper, a Blockchain implementation within a Microservices framework for ADS-B data verification is proposed. The aim of this work is to enable data feeds coming from third-party receivers to be processed and correlated with that of the ATC ground station receivers. The proposed framework could mitigate ADS- B security issues of message spoofing and anomalous traffic data. and hence minimize the cost of ATC infrastructure by throughout third-party support.

Calzavara, S., Focardi, R., Grimm, N., Maffei, M., Tempesta, M..  2020.  Language-Based Web Session Integrity. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :107—122.
Session management is a fundamental component of web applications: despite the apparent simplicity, correctly implementing web sessions is extremely tricky, as witnessed by the large number of existing attacks. This motivated the design of formal methods to rigorously reason about web session security which, however, are not supported at present by suitable automated verification techniques. In this paper we introduce the first security type system that enforces session security on a core model of web applications, focusing in particular on server-side code. We showcase the expressiveness of our type system by analyzing the session management logic of HotCRP, Moodle, and phpMyAdmin, unveiling novel security flaws that have been acknowledged by software developers.
Fu, Y., Tong, S., Guo, X., Cheng, L., Zhang, Y., Feng, D..  2020.  Improving the Effectiveness of Grey-box Fuzzing By Extracting Program Information. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :434–441.
Fuzzing has been widely adopted as an effective techniques to detect vulnerabilities in softwares. However, existing fuzzers suffer from the problems of generating excessive test inputs that either cannot pass input validation or are ineffective in exploring unvisited regions in the program under test (PUT). To tackle these problems, we propose a greybox fuzzer called MuFuzzer based on AFL, which incorporates two heuristics that optimize seed selection and automatically extract input formatting information from the PUT to increase the chance of generating valid test inputs, respectively. In particular, the first heuristic collects the branch coverage and execution information during a fuzz session, and utilizes such information to guide fuzzing tools in selecting seeds that are fast to execute, small in size, and more importantly, more likely to explore new behaviors of the PUT for subsequent fuzzing activities. The second heuristic automatically identifies string comparison operations that the PUT uses for input validation, and establishes a dictionary with string constants from these operations to help fuzzers generate test inputs that have higher chances to pass input validation. We have evaluated the performance of MuFuzzer, in terms of code coverage and bug detection, using a set of realistic programs and the LAVA-M test bench. Experiment results demonstrate that MuFuzzer is able to achieve higher code coverage and better or comparative bug detection performance than state-of-the-art fuzzers.