Biblio
Filters: First Letter Of Last Name is F [Clear All Filters]
When AI Gossips. 2020 IEEE International Symposium on Technology and Society (ISTAS). :69–71.
.
2020. The concept of AI Gossip is presented. It is analogous to the traditional understanding of a pernicious human failing. It is made more egregious by the technology of AI, internet, current privacy policies, and practices. The recognition by the technological community of its complacency is critical to realizing its damaging influence on human rights. A current example from the medical field is provided to facilitate the discussion and illustrate the seriousness of AI Gossip. Further study and model development is encouraged to support and facilitate the need to develop standards to address the implications and consequences to human rights and dignity.
Privacy Policy – ``I Agree''⁈ – Do Alternatives to Text-Based Policies Increase the Awareness of the Users? 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–6.
.
2020. Since GDPR was introduced, there is a reinforcement of the fact that users must give their consent before their personal data can be managed by any website. However, many studies have demonstrated that users often skip these policies and click the "I agree" button to continue browsing, being unaware of what the consent they gave was about, hence defeating the purpose of GDPR. This paper investigates if different ways of presenting users the privacy policy can change this behaviour and can lead to an increased awareness of the user in relation to what the user agrees with. Three different types of policies were used in the study: a full-text policy, a so-called usable policy, and a video-based policy. Results demonstrated that the type of policy has a direct influence on the user awareness and user satisfaction. The two alternatives to the text-based policy lead to a significant increase of user awareness in relation to the content of the policy and to a significant increase in the user satisfaction in relation to the usability of the policy.
Privacy Policies' Readability Analysis of Contemporary Free Healthcare Apps. 2020 14th International Conference on Open Source Systems and Technologies (ICOSST). :1–7.
.
2020. mHealth apps have a vital role in facilitation of human health management. Users have to enter sensitive health related information in these apps to fully utilize their functionality. Unauthorized sharing of sensitive health information is undesirable by the users. mHealth apps also collect data other than that required for their functionality like surfing behavior of a user or hardware details of devices used. mHealth software and their developers also share such data with third parties for reasons other than medical support provision to the user, like advertisements of medicine and health insurance plans. Existence of a comprehensive and easy to understand data privacy policy, on user data acquisition, sharing and management is a salient requirement of modern user privacy protection demands. Readability is one parameter by which ease of understanding of privacy policy is determined. In this research, privacy policies of 27 free Android, medical apps are analyzed. Apps having user rating of 4.0 and downloads of 1 Million or more are included in data set of this research.RGL, Flesch-Kincaid Reading Grade Level, SMOG, Gunning Fox, Word Count, and Flesch Reading Ease of privacy policies are calculated. Average Reading Grade Level of privacy policies is 8.5. It is slightly greater than average adult RGL in the US. Free mHealth apps have a large number of users in other, less educated parts of the World. Privacy policies with an average RGL of 8.5 may be difficult to comprehend in less educated populations.
Applying Privacy-Aware Policies in IoT Devices Using Privacy Metrics. 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI). :1–5.
.
2020. In recent years, user's privacy has become an important aspect in the development of Internet of Things (IoT) devices. However, there has been comparatively little research so far that aims to understanding user's privacy in connection with IoT. Many users are worried about protecting their personal information, which may be gathered by IoT devices. In this paper, we present a new method for applying the user's preferences within the privacy-aware policies in IoT devices. Users can prioritize a set of extendable privacy policies based on their preferences. This is achieved by assigning weights to these policies to form ranking criteria. A privacy-aware index is then calculated based on these ranking. In addition, IoT devices can be clustered based on their privacy-aware index value. In this paper, we present a new method for applying the user's preferences within the privacy-aware policies in IoT devices. Users can prioritize a set of extendable privacy policies based on their preferences. This is achieved by assigning weights to these policies to form ranking criteria. A privacy-aware index is then calculated based on these ranking. In addition, IoT devices can be clustered based on their privacy-aware index value.
Innovative Predictive Model for Smart City Security Risk Assessment. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1831–1836.
.
2020. In a Smart City, new technologies such as big data analytics, data fusion and artificial intelligence will increase awareness by measuring many phenomena and storing a huge amount of data. 5G will allow communication of these data among different infrastructures instantaneously. In a Smart City, security aspects are going to be a major concern. Some drawbacks, such as vulnerabilities of a highly integrated system and information overload, must be considered. To overcome these downsides, an innovative predictive model for Smart City security risk assessment has been developed. Risk metrics and indicators are defined by considering data coming from a wide range of sensors. An innovative ``what if'' algorithm is introduced to identify critical infrastructures functional relationship. Therefore, it is possible to evaluate the effects of an incident that involves one infrastructure over the others.
Design Obfuscation versus Test. 2020 IEEE European Test Symposium (ETS). :1–10.
.
2020. The current state of the integrated circuit (IC) ecosystem is that only a handful of foundries are at the forefront, continuously pushing the state of the art in transistor miniaturization. Establishing and maintaining a FinFET-capable foundry is a billion dollar endeavor. This scenario dictates that many companies and governments have to develop their systems and products by relying on 3rd party IC fabrication. The major caveat within this practice is that the procured silicon cannot be blindly trusted: a malicious foundry can effectively modify the layout of the IC, reverse engineer its IPs, and overproduce the entire chip. The Hardware Security community has proposed many countermeasures to these threats. Notably, obfuscation has gained a lot of traction - here, the intent is to hide the functionality from the untrusted foundry such that the aforementioned threats are hindered or mitigated. In this paper, we summarize the research efforts of three independent research groups towards achieving trustworthy ICs, even when fabricated in untrusted offshore foundries. We extensively address the use of logic locking and its many variants, as well as the use of high-level synthesis (HLS) as an obfuscation approach of its own.
Soft Multi-Factor Authentication. 2020 Wave Electronics and Its Application in Information and Telecommunication Systems (WECONF). :1–7.
.
2020. The Classification of devices involved in authentication and classification of authentication systems by type and combination of protocols used are proposed. The system architecture for soft multi-factor authentication designed and simulated.
Partitioning Analysis in Temporal Decomposition for Security-Constrained Economic Dispatch. 2020 IEEE Texas Power and Energy Conference (TPEC). :1–6.
.
2020. Distributed optimization algorithms are proposed to, potentially, reduce the computational time of large-scale optimization problems, such as security-constrained economic dispatch (SCED). While various geographical decomposition strategies have been presented in the literature, we proposed a temporal decomposition strategy to divide the SCED problem over the considered scheduling horizon. The proposed algorithm breaks SCED over the scheduling time and takes advantage of parallel computing using multi-core machines. In this paper, we investigate how to partition the overall time horizon. We study the effect of the number of partitions (i.e., SCED subproblems) on the overall performance of the distributed coordination algorithm and the effect of partitioning time interval on the optimal solution. In addition, the impact of system loading condition and ramp limits of the generating units on the number of iterations and solution time are analyzed. The results show that by increasing the number of subproblems, the computational burden of each subproblem is reduced, but more shared variables and constraints need to be modeled between the subproblems. This can result in increasing the total number of iterations and consequently the solution time. Moreover, since the load behavior affects the active ramping between the subproblems, the breaking hour determines the difference between shared variables. Hence, the optimal number of subproblems is problem dependent. A 3-bus and the IEEE 118-bus system are selected to analyze the effect of the number of partitions.
Complexity-Based Convolutional Neural Network for Malware Classification. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :1–9.
.
2020. Malware classification remains at the forefront of ongoing research as the prevalence of metamorphic malware introduces new challenges to anti-virus vendors and firms alike. One approach to malware classification is Static Analysis - a form of analysis which does not require malware to be executed before classification can be performed. For this reason, a lightweight classifier based on the features of a malware binary is preferred, with relatively low computational overhead. In this work a modified convolutional neural network (CNN) architecture was deployed which integrated a complexity-based evaluation based on box-counting. This was implemented by setting up max-pooling layers in parallel, and then extracting the fractal dimension using a polyscalar relationship based on the resolution of the measurement scale and the number of elements of a malware image covered in the measurement under consideration. To test the robustness and efficacy of our approach we trained and tested on over 9300 malware binaries from 25 unique malware families. This work was compared to other award-winning image recognition models, and results showed categorical accuracy in excess of 96.54%.
A Security Reference Model for Autonomous Vehicles in Military Operations. 2020 IEEE Conference on Communications and Network Security (CNS). :1–8.
.
2020. In a previous article [1] we proposed a layered framework to support the assessment of the security risks associated with the use of autonomous vehicles in military operations and determine how to manage these risks appropriately. We established consistent terminology and defined the problem space, while exploring the first layer of the framework, namely risks from the mission assurance perspective. In this paper, we develop the second layer of the framework. This layer focuses on the risk assessment of the vehicles themselves and on producing a highlevel security design adequate for the mission defined in the first layer. To support this process, we also define a reference model for autonomous vehicles to use as a common basis for the assessment of risks and the design of the security controls.
With Great Complexity Comes Great Vulnerability: From Stand-Alone Fixes to Reconfigurable Security. IEEE Security Privacy. 18:57–66.
.
2020. The increasing complexity of modern computing devices has rendered security architectures vulnerable to recent side-channel and transient-execution attacks. We discuss the most relevant defenses as well as their drawbacks and how to overcome them for next-generation secure processor design.
Conference Name: IEEE Security Privacy
Performance Evaluation of a Lightweight IoT Authentication Protocol. 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS). :1–4.
.
2020. Ensuring security to IoT devices is important in order to provide privacy and quality of services. Proposing a security solution is considered an important step towards achieving protection, however, proving the soundness of the solution is also crucial. In this paper, we propose a methodology for the performance evaluation of lightweight IoT-based authentication protocols based on execution time. Then, a formal verification test is conducted on a lightweight protocol proposed in the literature. The formal verification test conducted with Scyther tool proofs that the model provides mutual authentication, authorization, integrity, confidentiality, non-repudiation, and accountability. The protocol also was proven to provide protection from various attacks.
BCB-X3DH: A Blockchain Based Improved Version of the Extended Triple Diffie-Hellman Protocol. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :73–78.
.
2020. The Extended Triple Diffie-Hellman (X3DH) protocol has been used for years as the basis of secure communication establishment among parties (i.e, humans and devices) over the Internet. However, such a protocol has several limits. It is typically based on a single trust third-party server that represents a single point of failure (SPoF) being consequently exposed to well- known Distributed Denial of Service (DDOS) attacks. In order to address such a limit, several solutions have been proposed so far that are often cost expensive and difficult to be maintained. The objective of this paper is to propose a BlockChain-Based X3DH (BCB-X3DH) protocol that allows eliminating such a SPoF, also simplifying its maintenance. Specifically, it combines the well- known X3DH security mechanisms with the intrinsic features of data non-repudiation and immutability that are typical of Smart Contracts. Furthermore, different implementation approaches are discussed to suits both human-to-human and device-to-device scenarios. Experiments compared the performance of both X3DH and BCB-X3DH.
SDN/NFV-Based DDoS Mitigation via Pushback. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
.
2020. Distributed Denial of Service (DDoS) attacks aim at bringing down or decreasing the availability of services for their legitimate users, by exhausting network or server resources. It is difficult to differentiate attack traffic from legitimate traffic as the attack can come from distributed nodes that additionally might spoof their IP addresses. Traditional DoS mitigation solutions fail to defend all kinds of DoS attacks and huge DoS attacks might exceed the processing capacity of routers and firewalls easily. The advent of Software-defined Networking (SDN) and Network Function Virtualization (NFV) has brought a new perspective for network defense. Key features of such technologies like global network view and flexibly positionable security functionality can be used for mitigating DDoS attacks. In this paper, we propose a collaborative DDoS attack mitigation scheme that uses SDN and NFV. We adopt a machine learning algorithm from related work to derive accurate patterns describing DDoS attacks. Our experimental results indicate that our framework is able to differentiate attack and legitimate traffic with high accuracy and in near-realtime. Furthermore, the derived patterns can be used to create OpenFlow (OF) or Firewall rules that can be pushed back into the direction of the attack origin for more efficient and distributed filtering.
Requirements for Integrated Planning of Multi-Energy Systems. 2020 6th IEEE International Energy Conference (ENERGYCon). :696–701.
.
2020. The successful realization of the climate goals agreed upon in the European Union's COP21 commitments makes a fundamental change of the European energy system necessary. In particular, for a reduction of greenhouse gas emissions over 80%, the use of renewable energies must be increased not only in the electricity sector but also across all energy sectors, such as heat and mobility. Furthermore, a progressive integration of renewable energies increases the risk of congestions in the transmission grid and makes network expansion necessary. An efficient planning for future energy systems must comprise the coupling of energy sectors as well as interdependencies of generation and transmission grid infrastructure. However, in traditional energy system planning, these aspects are considered as decoupled. Therefore, the project PlaMES develops an approach for integrated planning of multi-energy systems on a European scale. This paper aims at analyzing the model requirements and describing the modeling approach.
Deep Q-learning Approach for Congestion Problem In Smart Cities. 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS). :1–6.
.
2020. Traffic congestion is a critical problem in urban area. In this study, our objective is the control of traffic lights in an urban environment, in order to avoid traffic jams and optimize vehicle traffic; we aim to minimize the total waiting time. Our system is based on a new paradigm, which is deep reinforcement learning; it can automatically learn all the useful characteristics of traffic data and develop a strategy optimizing adaptive traffic light control. Our system is coupled to a microscopic simulator based on agents (Simulation of Urban MObility - SUMO) providing a synthetic but realistic environment in which the exploration of the results of potential regulatory actions can be carried out.
SecBot: a Business-Driven Conversational Agent for Cybersecurity Planning and Management. 2020 16th International Conference on Network and Service Management (CNSM). :1–7.
.
2020. Businesses were moving during the past decades to-ward full digital models, which made companies face new threats and cyberattacks affecting their services and, consequently, their profits. To avoid negative impacts, companies' investments in cybersecurity are increasing considerably. However, Small and Medium-sized Enterprises (SMEs) operate on small budgets, minimal technical expertise, and few personnel to address cybersecurity threats. In order to address such challenges, it is essential to promote novel approaches that can intuitively present cybersecurity-related technical information.This paper introduces SecBot, a cybersecurity-driven conversational agent (i.e., chatbot) for the support of cybersecurity planning and management. SecBot applies concepts of neural networks and Natural Language Processing (NLP), to interact and extract information from a conversation. SecBot can (a) identify cyberattacks based on related symptoms, (b) indicate solutions and configurations according to business demands, and (c) provide insightful information for the decision on cybersecurity investments and risks. A formal description had been developed to describe states, transitions, a language, and a Proof-of-Concept (PoC) implementation. A case study and a performance evaluation were conducted to provide evidence of the proposed solution's feasibility and accuracy.
Blockchain-Powered Software Defined Network-Enabled Networking Infrastructure for Cloud Management. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–6.
.
2020. Cloud architecture has become a valuable solution for different applications, such as big data analytics, due to its high degree of availability, scalability and strategic value. However, there still remain challenges in managing cloud architecture, in areas such as cloud security. In this paper, we exploit software-defined networking (SDN) and blockchain technologies to secure cloud management platforms from a networking perspective. We develop a blockchain-powered SDN-enabled networking infrastructure in which the integration between blockchain-based security and autonomy management layer and multi-controller SDN networking layer is defined to enhance the integrity of the control and management messages. Furthermore, our proposed networking infrastructure also enables the autonomous bandwidth provisioning to enhance the availability of cloud architecture. In the simulation section, we evaluate the performance of our proposed blockchain-powered SDN-enabled networking infrastructure by considering different scenarios.
Long Short-Term Memory-Based Intrusion Detection System for In-Vehicle Controller Area Network Bus. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :10–17.
.
2020. The Controller Area Network (CAN) bus system works inside connected cars as a central system for communication between electronic control units (ECUs). Despite its central importance, the CAN does not support an authentication mechanism, i.e., CAN messages are broadcast without basic security features. As a result, it is easy for attackers to launch attacks at the CAN bus network system. Attackers can compromise the CAN bus system in several ways: denial of service, fuzzing, spoofing, etc. It is imperative to devise methodologies to protect modern cars against the aforementioned attacks. In this paper, we propose a Long Short-Term Memory (LSTM)-based Intrusion Detection System (IDS) to detect and mitigate the CAN bus network attacks. We first inject attacks at the CAN bus system in a car that we have at our disposal to generate the attack dataset, which we use to test and train our model. Our results demonstrate that our classifier is efficient in detecting the CAN attacks. We achieved a detection accuracy of 99.9949%.
Visual Authentication Scheme Based on Reversible Degradation and QR Code. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :58—63.
.
2020. Two-Dimensional barcodes are used as data authentication storage tool on several cryptographic architectures. This article describes a novel meaningful image authentication method for data validation using the Meaningless Reversible Degradation concept and QR Codes. The system architecture use the Meaningless Reversible Degradation algorithm, systematic Reed-Solomon error correction codes, meaningful images, and QR Codes. The encoded images are the secret key for visual validation. The proposed work encodes any secret image file up to 3.892 Bytes and is decoded using data stored in a QR Code and a digital file retrieved through a wireless connection on a mobile device. The QR Code carries partially distorted and stream ciphered bits. The QR Code version is defined in conformity with the secret image file size. Once the QR Code data is decoded, the authenticating party retrieves a previous created Reed-Solomon redundancy file to correct the QR Code stored data. Finally, the secret image is decoded for user visual identification. A regular QR Code reader cannot decode any meaningful information when the QR Code is scanned. The presented cryptosystem improves the redundancy download file size up to 50% compared to a plaintext image transmission.
CT sizing for generator and transformer protective relays. 15th International Conference on Developments in Power System Protection (DPSP 2020). :1–6.
.
2020. Modern relays often have algorithms that enhance the security of elements that are otherwise susceptible to current transformer (CT) saturation. In this paper, we consider some of the similarities and differences between IEEE and IEC guidance on CT selection. We use CT models verified using high-current tests on a physical CT. Then using these models, we determine CT sizing guidelines and relay settings for a generator and transformer differential relay. Application guidance for generator black start is provided. Considerations such as remanence are discussed.
A simulation calculation method for suppressing the magnetizing inrush current in the setting of the overcurrent protection of the connecting transformer in the hydropower station. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :197–202.
.
2020. In order to improve the reliability of power supply in adjacent hydropower stations, the auxiliary power systems of the two stations are connected through a contact transformer. The magnetizing inrush current generated by the connecting transformer of a hydropower station has the characteristics of high frequency, strong energy, and multi-coupling. The harm caused by the connecting transformer is huge. In order to prevent misoperation during the closing process of the connecting transformer, this article aims at the problem of setting the switching current of the connecting transformer of the two hydropower stations, and establishes the analysis model of the excitation inrush current with SimPowerSystem software, and carries out the quantitative simulation calculation of the excitation inrush current of the connecting transformer. A setting strategy for overcurrent protection of tie transformers to suppress the excitation inrush current is proposed. Under the conditions of changing switch closing time, generator load, auxiliary transformer load, tie transformer core remanence, the maximum amplitude of the excitation inrush current is comprehensively judged Value, and then achieve the suppression of the excitation inrush current, and accurately determine the protection setting of the switch.
Evaluation of the Detectability of Damper Cage Damages in Synchronous Motors through the Advanced Analysis of the Stray Flux. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :2058–2063.
.
2020. The determination of the damper cage health is a matter of great importance in those industries that use large synchronous motors in their processes. In the past, unexpected damages of that element implied economic losses amounting up to several million \$. The problem is that, in the technical literature, there is a lack of non-invasive techniques enabling the reliable condition monitoring of this element. This explains the fact that, in industry, rudimentary methods are still employed to determine its condition. This paper proposes the analysis of the stray flux as a way to determine the condition of the damper cage. The paper shows that the analysis of the stray flux under starting yields characteristic time-frequency signatures of the fault components that can be used to reliably determine the condition of the damper. Moreover, the analysis of the stray flux at steady-state operation under asynchronous mode could give useful information to this end. The paper also analyses the influence of the remanent magnetism in the rotor of some synchronous motors, which can make the damper cage diagnosis more difficult; some solutions to this problem are also suggested in the paper.
Research on Computer Software Engineering Database Programming Technology Based on Virtualization Cloud Platform. 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). :696—699.
.
2020. The most important advantage of database is that it can form an intensive management system and serve a large number of information users, which shows the importance of information security in network development. However, there are many problems in the current computer software engineering industry, which seriously hinder the development of computer software engineering, among which the most remarkable and prominent one is that the database programming technology is difficult to be effectively utilized. In this paper, virtualization technology is used to manage the underlying resources of data center with the application background of big data technology, and realize the virtualization of network resources, storage resources and computing resources. It can play a constructive role in the construction of data center, integrate traditional and old resources, realize the computing data center system through virtualization, distributed storage and resource scheduling, and realize the clustering and load balancing of non-relational databases.
An Anomaly Detection System for the Protection of Relational Database Systems against Data Leakage by Application Programs. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :265—276.
.
2020. Application programs are a possible source of attacks to databases as attackers might exploit vulnerabilities in a privileged database application. They can perform code injection or code-reuse attack in order to steal sensitive data. However, as such attacks very often result in changes in the program's behavior, program monitoring techniques represent an effective defense to detect on-going attacks. One such technique is monitoring the library/system calls that the application program issues while running. In this paper, we propose AD-PROM, an Anomaly Detection system that aims at protecting relational database systems against malicious/compromised applications PROgraMs aiming at stealing data. AD-PROM tracks calls executed by application programs on data extracted from a database. The system operates in two phases. The first phase statically and dynamically analyzes the behavior of the application in order to build profiles representing the application's normal behavior. AD-PROM analyzes the control and data flow of the application program (i.e., static analysis), and builds a hidden Markov model trained by the program traces (i.e., dynamic analysis). During the second phase, the program execution is monitored in order to detect anomalies that may represent data leakage attempts. We have implemented AD-PROM and carried experimental activities to assess its performance. The results showed that our system is highly accurate in detecting changes in the application programs' behaviors and has very low false positive rates.