Visible to the public Biblio

Found 1398 results

Filters: First Letter Of Last Name is F  [Clear All Filters]
2020-12-17
Abeykoon, I., Feng, X..  2019.  Challenges in ROS Forensics. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1677—1682.

The usage of robot is rapidly growth in our society. The communication link and applications connect the robots to their clients or users. This communication link and applications are normally connected through some kind of network connections. This network system is amenable of being attached and vulnerable to the security threats. It is a critical part for ensuring security and privacy for robotic platforms. The paper, also discusses about several cyber-physical security threats that are only for robotic platforms. The peer to peer applications use in the robotic platforms for threats target integrity, availability and confidential security purposes. A Remote Administration Tool (RAT) was introduced for specific security attacks. An impact oriented process was performed for analyzing the assessment outcomes of the attacks. Tests and experiments of attacks were performed in simulation environment which was based on Gazbo Turtlebot simulator and physically on the robot. A software tool was used for simulating, debugging and experimenting on ROS platform. Integrity attacks performed for modifying commands and manipulated the robot behavior. Availability attacks were affected for Denial-of-Service (DoS) and the robot was not listened to Turtlebot commands. Integrity and availability attacks resulted sensitive information on the robot.

2020-12-15
Reardon, C., Lee, K., Fink, J..  2018.  Come See This! Augmented Reality to Enable Human-Robot Cooperative Search. 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :1—7.

Robots operating alongside humans in field environments have the potential to greatly increase the situational awareness of their human teammates. A significant challenge, however, is the efficient conveyance of what the robot perceives to the human in order to achieve improved situational awareness. We believe augmented reality (AR), which allows a human to simultaneously perceive the real world and digital information situated virtually in the real world, has the potential to address this issue. Motivated by the emerging prevalence of practical human-wearable AR devices, we present a system that enables a robot to perform cooperative search with a human teammate, where the robot can both share search results and assist the human teammate in navigation to the search target. We demonstrate this ability in a search task in an uninstrumented environment where the robot identifies and localizes targets and provides navigation direction via AR to bring the human to the correct target.

Nasser, B., Rabani, A., Freiling, D., Gan, C..  2018.  An Adaptive Telerobotics Control for Advanced Manufacturing. 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). :82—89.
This paper explores an innovative approach to the telerobotics reasoning architecture and networking, which offer a reliable and adaptable operational process for complex tasks. There are many operational challenges in the remote control for manufacturing that can be introduced by the network communications and Iatency. A new protocol, named compact Reliable UDP (compact-RUDP), has been developed to combine both data channelling and media streaming for robot teleoperation. The original approach ensures connection reliability by implementing a TCP-like sliding window with UDP packets. The protocol provides multiple features including data security, link status monitoring, bandwidth control, asynchronous file transfer and prioritizing transfer of data packets. Experiments were conducted on a 5DOF robotic arm where a cutting tool was mounted at its distal end. A light sensor was used to guide the robot movements, and a camera device to provide a video stream of the operation. The data communication reliability is evaluated using Round-Trip Time (RTT), and advanced robot path planning for distributed decision making between endpoints. The results show 88% correlation between the remotely and locally operated robots. The file transfers and video streaming were performed with no data loss or corruption on the control commands and data feedback packets.
Boche, H., Cai, M., Wiese, M., Deppe, C., Ferrara, R..  2020.  Semantic Security for Quantum Wiretap Channels. 2020 IEEE International Symposium on Information Theory (ISIT). :1990—1995.

We determine the semantic security capacity for quantum wiretap channels. We extend methods for classical channels to quantum channels to demonstrate that a strongly secure code guarantees a semantically secure code with the same secrecy rate. Furthermore, we show how to transform a non-secure code into a semantically secure code by means of biregular irreducible functions (BRI functions). We analyze semantic security for classical-quantum channels and for quantum channels.

Frank, A..  2020.  Delay-Optimal Coding for Secure Transmission over Parallel Burst Erasure Channels with an Eavesdropper. 2020 IEEE International Symposium on Information Theory (ISIT). :960—965.

For streaming applications, we consider parallel burst erasure channels in the presence of an eavesdropper. The legitimate receiver must perfectly recover each source symbol subject to a decoding delay constraint without the eavesdropper gaining any information from his observation. For a certain class of code parameters, we propose delay-optimal M-link codes that recover multiple bursts of erasures of a limited length, and where the codes provide perfect security even if the eavesdropper can observe a link of his choice. Our codes achieve the maximum secrecy rate for the channel model.

2020-12-14
Cai, Y., Fragkos, G., Tsiropoulou, E. E., Veneris, A..  2020.  A Truth-Inducing Sybil Resistant Decentralized Blockchain Oracle. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :128–135.
Many blockchain applications use decentralized oracles to trustlessly retrieve external information as those platforms are agnostic to real-world information. Some existing decentralized oracle protocols make use of majority-voting schemes to determine the outcomes and/or rewards to participants. In these cases, the awards (or penalties) grow linearly to the participant stakes, therefore voters are indifferent between voting through a single or multiple identities. Furthermore, the voters receive a reward only when they agree with the majority outcome, a tactic that may lead to herd behavior. This paper proposes an oracle protocol based on peer prediction mechanisms with non-linear staking rules. In the proposed approach, instead of being rewarded when agreeing with a majority outcome, a voter receives awards when their report achieves a relatively high score based on a peer prediction scoring scheme. The scoring scheme is designed to be incentive compatible so that the maximized expected score is achieved only with honest reporting. A non-linear stake scaling rule is proposed to discourage Sybil attacks. This paper also provides a theoretical analysis and guidelines for implementation as reference.
Pilet, A. B., Frey, D., Taïani, F..  2020.  Foiling Sybils with HAPS in Permissionless Systems: An Address-based Peer Sampling Service. 2020 IEEE Symposium on Computers and Communications (ISCC). :1–6.
Blockchains and distributed ledgers have brought renewed interest in Byzantine fault-tolerant protocols and decentralized systems, two domains studied for several decades. Recent promising works have in particular proposed to use epidemic protocols to overcome the limitations of popular Blockchain mechanisms, such as proof-of-stake or proof-of-work. These works unfortunately assume a perfect peer-sampling service, immune to malicious attacks, a property that is difficult and costly to achieve. We revisit this fundamental problem in this paper, and propose a novel Byzantine-tolerant peer-sampling service that is resilient to Sybil attacks in open systems by exploiting the underlying structure of wide-area networks.
Xu, S., Ouyang, Z., Feng, J..  2020.  An Improved Multi-objective Particle Swarm Optimization. 2020 5th International Conference on Computational Intelligence and Applications (ICCIA). :19–23.
For solving multi-objective optimization problems, this paper firstly combines a multi-objective evolutionary algorithm based on decomposition (MOEA/D) with good convergence and non-dominated sorting genetic algorithm II (NSGA-II) with good distribution to construct. Thus we propose a hybrid multi-objective optimization solving algorithm. Then, we consider that the population diversity needs to be improved while applying multi-objective particle swarm optimization (MOPSO) to solve the multi-objective optimization problems and an improved MOPSO algorithm is proposed. We give the distance function between the individual and the population, and the individual with the largest distance is selected as the global optimal individual to maintain population diversity. Finally, the simulation experiments are performed on the ZDT\textbackslashtextbackslashDTLZ test functions and track planning problems. The results indicate the better performance of the improved algorithms.
Deng, M., Wu, X., Feng, P., Zeng, W..  2020.  Sparse Support Vector Machine for Network Behavior Anomaly Detection. 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN). :199–204.
Network behavior anomaly detection (NBAD) require fast mechanisms for learning from the large scale data. However, the training velocity of general machine learning approach is largely limited by the adopted training weights of all features in the NBAD. In this paper, we notice, however, that the related weights matching of NBAD features is sparse, which is not necessary for holding all weights. Hence, in this paper, we consider an efficient support vector machine (SVM) approach for NBAD by imposing 1 -norm. Essentially, we propose to use sparse SVM (S-SVM), where sparsity in model, i.e. in weights is used to interfere with special feature selection and that can achieve feature selection and classification efficiently.
2020-12-11
Correia, A., Fonseca, B., Paredes, H., Schneider, D., Jameel, S..  2019.  Development of a Crowd-Powered System Architecture for Knowledge Discovery in Scientific Domains. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :1372—1377.
A substantial amount of work is often overlooked due to the exponential rate of growth in global scientific output across all disciplines. Current approaches for addressing this issue are usually limited in scope and often restrict the possibility of obtaining multidisciplinary views in practice. To tackle this problem, researchers can now leverage an ecosystem of citizens, volunteers and crowd workers to perform complex tasks that are either difficult for humans and machines to solve alone. Motivated by the idea that human crowds and computer algorithms have complementary strengths, we present an approach where the machine will learn from crowd behavior in an iterative way. This approach is embodied in the architecture of SciCrowd, a crowd-powered human-machine hybrid system designed to improve the analysis and processing of large amounts of publication records. To validate the proposal's feasibility, a prototype was developed and an initial evaluation was conducted to measure its robustness and reliability. We conclude this paper with a set of implications for design.
Friedrich, T., Menzel, S..  2019.  Standardization of Gram Matrix for Improved 3D Neural Style Transfer. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :1375—1382.

Neural Style Transfer based on convolutional neural networks has produced visually appealing results for image and video data in the recent years where e.g. the content of a photo and the style of a painting are merged to a novel piece of digital art. In practical engineering development, we utilize 3D objects as standard for optimizing digital shapes. Since these objects can be represented as binary 3D voxel representation, we propose to extend the Neural Style Transfer method to 3D geometries in analogy to 2D pixel representations. In a series of experiments, we first evaluate traditional Neural Style Transfer on 2D binary monochromatic images. We show that this method produces reasonable results on binary images lacking color information and even improve them by introducing a standardized Gram matrix based loss function for style. For an application of Neural Style Transfer on 3D voxel primitives, we trained several classifier networks demonstrating the importance of a meaningful convolutional network architecture. The standardization of the Gram matrix again strongly contributes to visually improved, less noisy results. We conclude that Neural Style Transfer extended by a standardization of the Gram matrix is a promising approach for generating novel 3D voxelized objects and expect future improvements with increasing graphics memory availability for finer object resolutions.

Huang, Y., Jing, M., Tang, H., Fan, Y., Xue, X., Zeng, X..  2019.  Real-Time Arbitrary Style Transfer with Convolution Neural Network. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). :65—66.

Style transfer is a research hotspot in computer vision. Up to now, it is still a challenge although many researches have been conducted on it for high quality style transfer. In this work, we propose an algorithm named ASTCNN which is a real-time Arbitrary Style Transfer Convolution Neural Network. The ASTCNN consists of two independent encoders and a decoder. The encoders respectively extract style and content features from style and content and the decoder generates the style transferred image images. Experimental results show that ASTCNN achieves higher quality output image than the state-of-the-art style transfer algorithms and the floating point computation of ASTCNN is 23.3% less than theirs.

Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I..  2019.  A Real-time Drone Surveillance System Using Pixel-level Short-time Fourier Transform. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :303—308.

In this study we propose a novel method for drone surveillance that can simultaneously analyze time-frequency responses in all pixels of a high-frame-rate video. The propellers of flying drones rotate at hundreds of Hz and their principal vibration frequency components are much higher than those of their background objects. To separate the pixels around a drone's propellers from its background, we utilize these time-series features for vibration source localization with pixel-level short-time Fourier transform (STFT). We verify the relationship between the number of taps in the STFT computation and the performance of our algorithm, including the execution time and the localization accuracy, by conducting experiments under various conditions, such as degraded appearance, weather, and defocused blur. The robustness of the proposed algorithm is also verified by localizing a flying multi-copter in real-time in an outdoor scenario.

Ge, X., Pan, Y., Fan, Y., Fang, C..  2019.  AMDroid: Android Malware Detection Using Function Call Graphs. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :71—77.

With the rapid development of the mobile Internet, Android has been the most popular mobile operating system. Due to the open nature of Android, c countless malicious applications are hidden in a large number of benign applications, which pose great threats to users. Most previous malware detection approaches mainly rely on features such as permissions, API calls, and opcode sequences. However, these approaches fail to capture structural semantics of applications. In this paper, we propose AMDroid that leverages function call graphs (FCGs) representing the behaviors of applications and applies graph kernels to automatically learn the structural semantics of applications from FCGs. We evaluate AMDroid on the Genome Project, and the experimental results show that AMDroid is effective to detect Android malware with 97.49% detection accuracy.

Fan, M., Luo, X., Liu, J., Wang, M., Nong, C., Zheng, Q., Liu, T..  2019.  Graph Embedding Based Familial Analysis of Android Malware using Unsupervised Learning. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :771—782.

The rapid growth of Android malware has posed severe security threats to smartphone users. On the basis of the familial trait of Android malware observed by previous work, the familial analysis is a promising way to help analysts better focus on the commonalities of malware samples within the same families, thus reducing the analytical workload and accelerating malware analysis. The majority of existing approaches rely on supervised learning and face three main challenges, i.e., low accuracy, low efficiency, and the lack of labeled dataset. To address these challenges, we first construct a fine-grained behavior model by abstracting the program semantics into a set of subgraphs. Then, we propose SRA, a novel feature that depicts the similarity relationships between the Structural Roles of sensitive API call nodes in subgraphs. An SRA is obtained based on graph embedding techniques and represented as a vector, thus we can effectively reduce the high complexity of graph matching. After that, instead of training a classifier with labeled samples, we construct malware link network based on SRAs and apply community detection algorithms on it to group the unlabeled samples into groups. We implement these ideas in a system called GefDroid that performs Graph embedding based familial analysis of AnDroid malware using unsupervised learning. Moreover, we conduct extensive experiments to evaluate GefDroid on three datasets with ground truth. The results show that GefDroid can achieve high agreements (0.707-0.883 in term of NMI) between the clustering results and the ground truth. Furthermore, GefDroid requires only linear run-time overhead and takes around 8.6s to analyze a sample on average, which is considerably faster than the previous work.

2020-12-07
Furtak, J., Zieliński, Z., Chudzikiewicz, J..  2019.  Security Domain for the Sensor Nodes with Strong Authentication. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1–6.
Nowadays interest in IoT solutions is growing. A significant barrier to the use of these solutions in military applications is to ensure the security of data transmission and authentication of data sources and recipients of the data. Developing an efficient solution to these problems requires finding a compromise between the facts that the sensors often are mobile, use wireless communication, usually have the small processing power and have little energy resources. The article presents the security domain designated for cooperating mobile sensor nodes. The domain has the following features: the strong authentication of each domain member, cryptographic protection of data exchange in the data link layer and protection of data stored in the sensor node resources. The domain is also prepared to perform diagnostic procedures and to exchange sensory data with other domains securely. At each node, the Trusted Platform Module (TPM) is used to support these procedures.
2020-12-02
Ye, J., Liu, R., Xie, Z., Feng, L., Liu, S..  2019.  EMPTCP: An ECN Based Approach to Detect Shared Bottleneck in MPTCP. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1—10.

The major challenge of Real Time Protocol is to balance efficiency and fairness over limited bandwidth. MPTCP has proved to be effective for multimedia and real time networks. Ideally, an MPTCP sender should couple the subflows sharing the bottleneck link to provide TCP friendliness. However, existing shared bottleneck detection scheme either utilize end-to-end delay without consideration of multiple bottleneck scenario, or identify subflows on switch at the expense of operation overhead. In this paper, we propose a lightweight yet accurate approach, EMPTCP, to detect shared bottleneck. EMPTCP uses the widely deployed ECN scheme to capture the real congestion state of shared bottleneck, while at the same time can be transparently utilized by various enhanced MPTCP protocols. Through theory analysis, simulation test and real network experiment, we show that EMPTCP achieves higher than 90% accuracy in shared bottleneck detection, thus improving the network efficiency and fairness.

2020-12-01
Abdulhammed, R., Faezipour, M., Musafer, H., Abuzneid, A..  2019.  Efficient Network Intrusion Detection Using PCA-Based Dimensionality Reduction of Features. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.

Designing a machine learning based network intrusion detection system (IDS) with high-dimensional features can lead to prolonged classification processes. This is while low-dimensional features can reduce these processes. Moreover, classification of network traffic with imbalanced class distributions has posed a significant drawback on the performance attainable by most well-known classifiers. With the presence of imbalanced data, the known metrics may fail to provide adequate information about the performance of the classifier. This study first uses Principal Component Analysis (PCA) as a feature dimensionality reduction approach. The resulting low-dimensional features are then used to build various classifiers such as Random Forest (RF), Bayesian Network, Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) for designing an IDS. The experimental findings with low-dimensional features in binary and multi-class classification show better performance in terms of Detection Rate (DR), F-Measure, False Alarm Rate (FAR), and Accuracy. Furthermore, in this paper, we apply a Multi-Class Combined performance metric Combi ned Mc with respect to class distribution through incorporating FAR, DR, Accuracy, and class distribution parameters. In addition, we developed a uniform distribution based balancing approach to handle the imbalanced distribution of the minority class instances in the CICIDS2017 network intrusion dataset. We were able to reduce the CICIDS2017 dataset's feature dimensions from 81 to 10 using PCA, while maintaining a high accuracy of 99.6% in multi-class and binary classification.

Weigelin, B. C., Mathiesen, M., Nielsen, C., Fischer, K., Nielsen, J..  2018.  Trust in Medical Human-Robot Interactions based on Kinesthetic guidance. 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :901—908.

In medical human-robot interactions, trust plays an important role since for patients there may be more at stake than during other kinds of encounters with robots. In the current study, we address issues of trust in the interaction with a prototype of a therapeutic robot, the Universal RoboTrainer, in which the therapist records patient-specific tasks for the patient by means of kinesthetic guidance of the patients arm, which is connected to the robot. We carried out a user study with twelve pairs of participants who collaborate on recording a training program on the robot. We examine a) the degree with which participants identify the situation as uncomfortable or distressing, b) participants' own strategies to mitigate that stress, c) the degree to which the robot is held responsible for the problems occurring and the amount of agency ascribed to it, and d) when usability issues arise, what effect these have on participants' trust. We find signs of distress mostly in contexts with usability issues, as well as many verbal and kinesthetic mitigation strategies intuitively employed by the participants. Recommendations for robots to increase users' trust in kinesthetic interactions include the timely production of verbal cues that continuously confirm that everything is alright as well as increased contingency in the presentation of strategies for recovering from usability issues arising.

Robinette, P., Novitzky, M., Fitzgerald, C., Benjamin, M. R., Schmidt, H..  2019.  Exploring Human-Robot Trust During Teaming in a Real-World Testbed. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :592—593.

Project Aquaticus is a human-robot teaming competition on the water involving autonomous surface vehicles and human operated motorized kayaks. Teams composed of both humans and robots share the same physical environment to play capture the flag. In this paper, we present results from seven competitions of our half-court (one participant versus one robot) game. We found that participants indicated more trust in more aggressive behaviors from robots.

2020-11-30
Machida, H., Fujiwara, T., Fujimoto, C., Kanamori, Y., Tanaka, J., Takezawa, M..  2019.  Magnetic Domain Structures and Magnetic Properties of Lightly Nd-Doped Sm–Co Magnets With High Squareness and High Heat Resistance. IEEE Transactions on Magnetics. 55:1–4.
The relationship between magnetic domain structures and magnetic properties of Nd-doped Sm(Fe, Cu, Zr, Co)7.5 was investigated. In the preparation process, slow cooling between sintering and solution treatment was employed to promote homogenization of microstructures. The developed magnet achieved a maximum energy product, [BH]m, of 33.8 MGOe and coercivity, Hcb, of 11.2 kOe at 25 °C, respectively. Moreover, B-H line at 150 °C was linear, which means that irreversible demagnetization does not occur even at 150 °C. Temperature coefficients of remanent magnetic flux density, Br, and intrinsic coercivity, Hcj, were 0.035%/K and 0.24%/K, respectively, as usual the conventional Sm-Co magnet. Magnetic domain structures were observed with a Kerr effect microscope with a magnetic field applied from 0 to -20 kOe, and then reverse magnetic domains were generated evenly from grain boundaries. Microstructures referred to as “cell structures” were observed with a scanning transmission electron microscope. Fe and Cu were separated to 2-17 and 1-5 phases, respectively. Moreover, without producing impurity phases, Nd showed the same composition behavior with Sm in a cell structure.
Gerdroodbari, Y. Z., Davarpanah, M., Farhangi, S..  2018.  Remanent Flux Negative Effects on Transformer Diagnostic Test Results and a Novel Approach for Its Elimination. IEEE Transactions on Power Delivery. 33:2938–2945.
Influence of remanent flux on hysteresis curve of the transformer core is addressed in this paper. In addition, its significant negative effect on transformer diagnostic tests is quantified based on experimental studies. Furthermore, a novel approach is proposed to efficiently and quickly eliminate the remanent flux. This approach is evaluated based on simulation studies on a 230/63-kV power transformer. Meanwhile, experimental studies are performed on both 0.2/0.2 and 20/0.4 kV transformers. These studies reveal that the approach not only is well able to eliminate the remanent flux, but also it has various advantages over the commonly used method. In addition, this approach is equally applicable for various power, distribution, and instrument transformer types.
2020-11-20
Zhu, S., Chen, H., Xi, W., Chen, M., Fan, L., Feng, D..  2019.  A Worst-Case Entropy Estimation of Oscillator-Based Entropy Sources: When the Adversaries Have Access to the History Outputs. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :152—159.
Entropy sources are designed to provide unpredictable random numbers for cryptographic systems. As an assessment of the sources, Shannon entropy is usually adopted to quantitatively measure the unpredictability of the outputs. In several related works about the entropy evaluation of ring oscillator-based (RO-based) entropy sources, authors evaluated the unpredictability with the average conditional Shannon entropy (ACE) of the source, moreover provided a lower bound of the ACE (LBoACE). However, in this paper, we have demonstrated that when the adversaries have access to the history outputs of the entropy source, for example, by some intrusive attacks, the LBoACE may overestimate the actual unpredictability of the next output for the adversaries. In this situation, we suggest to adopt the specific conditional Shannon entropy (SCE) which exactly measures the unpredictability of the future output with the knowledge of previous output sequences and so is more consistent with the reality than the ACE. In particular, to be conservative, we propose to take the lower bound of the SCE (LBoSCE) as an estimation of the worst-case entropy of the sources. We put forward a detailed method to estimate this worst-case entropy of RO-based entropy sources, which we have also verified by experiment on an FPGA device. We recommend to adopt this method to provide a conservative assessment of the unpredictability when the entropy source works in a vulnerable environment and the adversaries might obtain the previous outputs.
Sui, T., Marelli, D., Sun, X., Fu, M..  2019.  Stealthiness of Attacks and Vulnerability of Stochastic Linear Systems. 2019 12th Asian Control Conference (ASCC). :734—739.
The security of Cyber-physical systems has been a hot topic in recent years. There are two main focuses in this area: Firstly, what kind of attacks can avoid detection, i.e., the stealthiness of attacks. Secondly, what kind of systems can stay stable under stealthy attacks, i.e., the invulnerability of systems. In this paper, we will give a detailed characterization for stealthy attacks and detection criterion for such attacks. We will also study conditions for the vulnerability of a stochastic linear system under stealthy attacks.
2020-11-17
Tosh, D. K., Shetty, S., Foytik, P., Njilla, L., Kamhoua, C. A..  2018.  Blockchain-Empowered Secure Internet -of- Battlefield Things (IoBT) Architecture. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :593—598.

Internet of Things (IoT) technology is emerging to advance the modern defense and warfare applications because the battlefield things, such as combat equipment, warfighters, and vehicles, can sense and disseminate information from the battlefield to enable real-time decision making on military operations and enhance autonomy in the battlefield. Since this Internet-of-Battlefield Things (IoBT) environment is highly heterogeneous in terms of devices, network standards, platforms, connectivity, and so on, it introduces trust, security, and privacy challenges when battlefield entities exchange information with each other. To address these issues, we propose a Blockchain-empowered auditable platform for IoBT and describe its architectural components, such as battlefield-sensing layer, network layer, and consensus and service layer, in depth. In addition to the proposed layered architecture, this paper also presents several open research challenges involved in each layer to realize the Blockchain-enabled IoBT platform.