Guili, Liang, Dongying, Zhang, Wei, Wang, Cheng, Gong, Duo, Cui, Yichun, Tian, Yan, Wang.
2022.
Research on Cooperative Black-Start Strategy of Internal and External Power Supply in the Large Power Grid. 2022 4th International Conference on Power and Energy Technology (ICPET). :511—517.
At present, the black-start mode of the large power grid is mostly limited to relying on the black-start power supply inside the system, or only to the recovery mode that regards the transmission power of tie lines between systems as the black-start power supply. The starting power supply involved in the situation of the large power outage is incomplete and it is difficult to give full play to the respective advantages of internal and external power sources. In this paper, a method of coordinated black-start of large power grid internal and external power sources is proposed by combining the two modes. Firstly, the black-start capability evaluation system is built to screen out the internal black-start power supply, and the external black-start power supply is determined by analyzing the connection relationship between the systems. Then, based on the specific implementation principles, the black-start power supply coordination strategy is formulated by using the Dijkstra shortest path algorithm. Based on the condensation idea, the black-start zoning and path optimization method applicable to this strategy is proposed. Finally, the black-start security verification and corresponding control measures are adopted to obtain a scheme of black-start cooperation between internal and external power sources in the large power grid. The above method is applied in a real large power grid and compared with the conventional restoration strategy to verify the feasibility and efficiency of this method.
Haase, Julian, Jaster, Sebastian, Franz, Elke, Göhringer, Diana.
2022.
Secure Communication Protocol for Network-on-Chip with Authenticated Encryption and Recovery Mechanism. 2022 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP). :156—160.
In recent times, Network-on-Chip (NoC) has become state of the art for communication in Multiprocessor System-on-Chip due to the existing scalability issues in this area. However, these systems are exposed to security threats such as extraction of secret information. Therefore, the need for secure communication arises in such environments. In this work, we present a communication protocol based on authenticated encryption with recovery mechanisms to establish secure end-to-end communication between the NoC nodes. In addition, a selected key agreement approach required for secure communication is implemented. The security functionality is located in the network adapter of each processing element. If data is tampered with or deleted during transmission, recovery mechanisms ensure that the corrupted data is retransmitted by the network adapter without the need of interference from the processing element. We simulated and implemented the complete system with SystemC TLM using the NoC simulation platform PANACA. Our results show that we can keep a high rate of correctly transmitted information even when attackers infiltrated the NoC system.
Wang, Yingjue, Gong, Lei, Zhang, Min.
2022.
Remote Disaster Recovery and Backup of Rehabilitation Medical Archives Information System Construction under the Background of Big Data. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :575—578.
Realize the same-city and remote disaster recovery of the infectious disease network direct reporting system of the China Medical Archives Information Center. Method: A three-tier B/S/DBMS architecture is used in the disaster recovery center to deploy an infectious disease network direct reporting system, and realize data-level disaster recovery through remote replication technology; realize application-level disaster recovery of key business systems through asynchronous data technology; through asynchronous the mode carries on the network direct report system disaster tolerance data transmission of medical files. The establishment of disaster recovery centers in different cities in the same city ensures the direct reporting system and data security of infectious diseases, and ensures the effective progress of continuity work. The results show that the efficiency of remote disaster recovery and backup based on big data has increased by 9.2%
Erbil, Pinar, Gursoy, M. Emre.
2022.
Detection and Mitigation of Targeted Data Poisoning Attacks in Federated Learning. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1—8.
Federated learning (FL) has emerged as a promising paradigm for distributed training of machine learning models. In FL, several participants train a global model collaboratively by only sharing model parameter updates while keeping their training data local. However, FL was recently shown to be vulnerable to data poisoning attacks, in which malicious participants send parameter updates derived from poisoned training data. In this paper, we focus on defending against targeted data poisoning attacks, where the attacker’s goal is to make the model misbehave for a small subset of classes while the rest of the model is relatively unaffected. To defend against such attacks, we first propose a method called MAPPS for separating malicious updates from benign ones. Using MAPPS, we propose three methods for attack detection: MAPPS + X-Means, MAPPS + VAT, and their Ensemble. Then, we propose an attack mitigation approach in which a "clean" model (i.e., a model that is not negatively impacted by an attack) can be trained despite the existence of a poisoning attempt. We empirically evaluate all of our methods using popular image classification datasets. Results show that we can achieve \textgreater 95% true positive rates while incurring only \textless 2% false positive rate. Furthermore, the clean models that are trained using our proposed methods have accuracy comparable to models trained in an attack-free scenario.
Franci, Adriano, Cordy, Maxime, Gubri, Martin, Papadakis, Mike, Traon, Yves Le.
2022.
Influence-Driven Data Poisoning in Graph-Based Semi-Supervised Classifiers. 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN). :77—87.
Graph-based Semi-Supervised Learning (GSSL) is a practical solution to learn from a limited amount of labelled data together with a vast amount of unlabelled data. However, due to their reliance on the known labels to infer the unknown labels, these algorithms are sensitive to data quality. It is therefore essential to study the potential threats related to the labelled data, more specifically, label poisoning. In this paper, we propose a novel data poisoning method which efficiently approximates the result of label inference to identify the inputs which, if poisoned, would produce the highest number of incorrectly inferred labels. We extensively evaluate our approach on three classification problems under 24 different experimental settings each. Compared to the state of the art, our influence-driven attack produces an average increase of error rate 50% higher, while being faster by multiple orders of magnitude. Moreover, our method can inform engineers of inputs that deserve investigation (relabelling them) before training the learning model. We show that relabelling one-third of the poisoned inputs (selected based on their influence) reduces the poisoning effect by 50%. ACM Reference Format: Adriano Franci, Maxime Cordy, Martin Gubri, Mike Papadakis, and Yves Le Traon. 2022. Influence-Driven Data Poisoning in Graph-Based Semi-Supervised Classifiers. In 1st Conference on AI Engineering - Software Engineering for AI (CAIN’22), May 16–24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3522664.3528606
Anastasakis, Zacharias, Psychogyios, Konstantinos, Velivassaki, Terpsi, Bourou, Stavroula, Voulkidis, Artemis, Skias, Dimitrios, Gonos, Antonis, Zahariadis, Theodore.
2022.
Enhancing Cyber Security in IoT Systems using FL-based IDS with Differential Privacy. 2022 Global Information Infrastructure and Networking Symposium (GIIS). :30—34.
Nowadays, IoT networks and devices exist in our everyday life, capturing and carrying unlimited data. However, increasing penetration of connected systems and devices implies rising threats for cybersecurity with IoT systems suffering from network attacks. Artificial Intelligence (AI) and Machine Learning take advantage of huge volumes of IoT network logs to enhance their cybersecurity in IoT. However, these data are often desired to remain private. Federated Learning (FL) provides a potential solution which enables collaborative training of attack detection model among a set of federated nodes, while preserving privacy as data remain local and are never disclosed or processed on central servers. While FL is resilient and resolves, up to a point, data governance and ownership issues, it does not guarantee security and privacy by design. Adversaries could interfere with the communication process, expose network vulnerabilities, and manipulate the training process, thus affecting the performance of the trained model. In this paper, we present a federated learning model which can successfully detect network attacks in IoT systems. Moreover, we evaluate its performance under various settings of differential privacy as a privacy preserving technique and configurations of the participating nodes. We prove that the proposed model protects the privacy without actually compromising performance. Our model realizes a limited performance impact of only ∼ 7% less testing accuracy compared to the baseline while simultaneously guaranteeing security and applicability.
S, Harichandana B S, Agarwal, Vibhav, Ghosh, Sourav, Ramena, Gopi, Kumar, Sumit, Raja, Barath Raj Kandur.
2022.
PrivPAS: A real time Privacy-Preserving AI System and applied ethics. 2022 IEEE 16th International Conference on Semantic Computing (ICSC). :9—16.
With 3.78 billion social media users worldwide in 2021 (48% of the human population), almost 3 billion images are shared daily. At the same time, a consistent evolution of smartphone cameras has led to a photography explosion with 85% of all new pictures being captured using smartphones. However, lately, there has been an increased discussion of privacy concerns when a person being photographed is unaware of the picture being taken or has reservations about the same being shared. These privacy violations are amplified for people with disabilities, who may find it challenging to raise dissent even if they are aware. Such unauthorized image captures may also be misused to gain sympathy by third-party organizations, leading to a privacy breach. Privacy for people with disabilities has so far received comparatively less attention from the AI community. This motivates us to work towards a solution to generate privacy-conscious cues for raising awareness in smartphone users of any sensitivity in their viewfinder content. To this end, we introduce PrivPAS (A real time Privacy-Preserving AI System) a novel framework to identify sensitive content. Additionally, we curate and annotate a dataset to identify and localize accessibility markers and classify whether an image is sensitive to a featured subject with a disability. We demonstrate that the proposed lightweight architecture, with a memory footprint of a mere 8.49MB, achieves a high mAP of 89.52% on resource-constrained devices. Furthermore, our pipeline, trained on face anonymized data. achieves an F1-score of 73.1%.
Golatkar, Aditya, Achille, Alessandro, Wang, Yu-Xiang, Roth, Aaron, Kearns, Michael, Soatto, Stefano.
2022.
Mixed Differential Privacy in Computer Vision. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :8366—8376.
We introduce AdaMix, an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data. While pre-training language models on large public datasets has enabled strong differential privacy (DP) guarantees with minor loss of accuracy, a similar practice yields punishing trade-offs in vision tasks. A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset. AdaMix incorporates few-shot training, or cross-modal zero-shot learning, on public data prior to private fine-tuning, to improve the trade-off. AdaMix reduces the error increase from the non-private upper bound from the 167–311% of the baseline, on average across 6 datasets, to 68-92% depending on the desired privacy level selected by the user. AdaMix tackles the trade-off arising in visual classification, whereby the most privacy sensitive data, corresponding to isolated points in representation space, are also critical for high classification accuracy. In addition, AdaMix comes with strong theoretical privacy guarantees and convergence analysis.
Guri, Mordechai.
2022.
ETHERLED: Sending Covert Morse Signals from Air-Gapped Devices via Network Card (NIC) LEDs. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :163—170.
Highly secure devices are often isolated from the Internet or other public networks due to the confidential information they process. This level of isolation is referred to as an ’air-gap .’In this paper, we present a new technique named ETHERLED, allowing attackers to leak data from air-gapped networked devices such as PCs, printers, network cameras, embedded controllers, and servers. Networked devices have an integrated network interface controller (NIC) that includes status and activity indicator LEDs. We show that malware installed on the device can control the status LEDs by blinking and alternating colors, using documented methods or undocumented firmware commands. Information can be encoded via simple encoding such as Morse code and modulated over these optical signals. An attacker can intercept and decode these signals from tens to hundreds of meters away. We show an evaluation and discuss defensive and preventive countermeasures for this exfiltration attack.
Guri, Mordechai.
2022.
SATAn: Air-Gap Exfiltration Attack via Radio Signals From SATA Cables. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
This paper introduces a new type of attack on isolated, air-gapped workstations. Although air-gap computers have no wireless connectivity, we show that attackers can use the SATA cable as a wireless antenna to transfer radio signals at the 6 GHz frequency band. The Serial ATA (SATA) is a bus interface widely used in modern computers and connects the host bus to mass storage devices such as hard disk drives, optical drives, and solid-state drives. The prevalence of the SATA interface makes this attack highly available to attackers in a wide range of computer systems and IT environments. We discuss related work on this topic and provide technical background. We show the design of the transmitter and receiver and present the implementation of these components. We also demonstrate the attack on different computers and provide the evaluation. The results show that attackers can use the SATA cable to transfer a brief amount of sensitive information from highly secured, air-gap computers wirelessly to a nearby receiver. Furthermore, we show that the attack can operate from user mode, is effective even from inside a Virtual Machine (VM), and can successfully work with other running workloads in the background. Finally, we discuss defense and mitigation techniques for this new air-gap attack.