Biblio
This paper establishes a probability model of multiple paths scheme of quantum key distribution with public nodes among a set of paths which are used to transmit the key between the source node and the destination node. Then in order to be used in universal net topologies, combining with the key routing in the QKD network, the algorithm of the multiple paths scheme of key distribution we propose includes two major aspects: one is an approach which can confirm the number and the distance of the selection of paths, and the other is the strategy of stochastic paths with labels that can decrease the number of public nodes and avoid the phenomenon that the old scheme may produce loops and often get the nodes apart from the destination node father than current nodes. Finally, the paper demonstrates the rationality of the probability model and strategies about the algorithm.
Trusted routing is a hot spot in network security. Lots of efforts have been made on trusted routing validation for Interior Gateway Protocols (IGP), e.g., using Public Key Infrastructure (PKI) to enhance the security of protocols, or routing monitoring systems. However, the former is limited by further deployment in the practical Internet, the latter depends on a complete, accurate, and fresh knowledge base-this is still a big challenge (Internet Service Providers (ISPs) are not willing to leak their routing policies). In this paper, inspired by the idea of centrally controlling in Software Defined Network (SDN), we propose a CENtrally Trusted Routing vAlidation framework, named CENTRA, which can automated collect routing information, centrally detect anomaly and deliver secure routing policy. We implement the proposed framework using NETCONF as the communication protocol and YANG as the data model. The experimental results reveal that CENTRA can detect and block anomalous routing in real time. Comparing to existing secure routing mechanism, CENTRA improves the detection efficiency and real-time significantly.
Hardware Trojans that can be easily embedded in synchronous clock generation circuits typical of what are used in large digital systems are discussed. These Trojans are both visible and transparent. Since they are visible, they will penetrate split-lot manufacturing security methods and their transparency will render existing detection methods ineffective.
Due to the increase in design complexity and cost of VLSI chips, a number of design houses outsource manufacturing and import designs in a way to reduce the cost. This results in a decrease of the authenticity and security of the manufactured product. Since product development involves outside sources, circuit designers can not guarantee that their hardware has not been altered. It is often possible that attackers include additional hardware in order to gain privileges over the original circuit or cause damage to the product. These added circuits are called ``Hardware Trojans''. In this paper, we investigate introducing necessary modules needed for detection of hardware Trojans. We also introduce necessary programmable logic fabric that can be used in the implementation of the hardware assertion checkers. Our target is to utilize the provided programable fabric in a System on Chip (SoC) and optimize the hardware assertion to cover the detection of most hardware trojans in each core of the target SoC.
Side-channel risks of Intel SGX have recently attracted great attention. Under the spotlight is the newly discovered page-fault attack, in which an OS-level adversary induces page faults to observe the page-level access patterns of a protected process running in an SGX enclave. With almost all proposed defense focusing on this attack, little is known about whether such efforts indeed raise the bar for the adversary, whether a simple variation of the attack renders all protection ineffective, not to mention an in-depth understanding of other attack surfaces in the SGX system. In the paper, we report the first step toward systematic analyses of side-channel threats that SGX faces, focusing on the risks associated with its memory management. Our research identifies 8 potential attack vectors, ranging from TLB to DRAM modules. More importantly, we highlight the common misunderstandings about SGX memory side channels, demonstrating that high frequent AEXs can be avoided when recovering EdDSA secret key through a new page channel and fine-grained monitoring of enclave programs (at the level of 64B) can be done through combining both cache and cross-enclave DRAM channels. Our findings reveal the gap between the ongoing security research on SGX and its side-channel weaknesses, redefine the side-channel threat model for secure enclaves, and can provoke a discussion on when to use such a system and how to use it securely.
Cross-VM attacks have emerged as a major threat on commercial clouds. These attacks commonly exploit hardware level leakages on shared physical servers. A co-located machine can readily feel the presence of a co-located instance with a heavy computational load through performance degradation due to contention on shared resources. Shared cache architectures such as the last level cache (LLC) have become a popular leakage source to mount cross-VM attack. By exploiting LLC leakages, researchers have already shown that it is possible to recover fine grain information such as cryptographic keys from popular software libraries. This makes it essential to verify implementations that handle sensitive data across the many versions and numerous target platforms, a task too complicated, error prone and costly to be handled by human beings. Here we propose a machine learning based technique to classify applications according to their cache access profiles. We show that with minimal and simple manual processing steps feature vectors can be used to train models using support vector machines to classify the applications with a high degree of success. The profiling and training steps are completely automated and do not require any inspection or study of the code to be classified. In native execution, we achieve a successful classification rate as high as 98% (L1 cache) and 78$\backslash$% (LLC) over 40 benchmark applications in the Phoronix suite with mild training. In the cross-VM setting on the noisy Amazon EC2 the success rate drops to 60$\backslash$% for a suite of 25 applications. With this initial study we demonstrate that it is possible to train meaningful models to successfully predict applications running in co-located instances.
Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non- linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non- homogeneous features.
Explosive naval mines pose a threat to ocean and sea faring vessels, both military and civilian. This work applies deep neural network (DNN) methods to the problem of detecting minelike objects (MLO) on the seafloor in side-scan sonar imagery. We explored how the DNN depth, memory requirements, calculation requirements, and training data distribution affect detection efficacy. A visualization technique (class activation map) was incorporated that aids a user in interpreting the model's behavior. We found that modest DNN model sizes yielded better accuracy (98%) than very simple DNN models (93%) and a support vector machine (78%). The largest DNN models achieved textless;1% efficacy increase at a cost of a 17x increase of trainable parameter count and computation requirements. In contrast to DNNs popularized for many-class image recognition tasks, the models for this task require far fewer computational resources (0.3% of parameters), and are suitable for embedded use within an autonomous unmanned underwater vehicle.
Understanding and fending off attack campaigns against organizations, companies and individuals, has become a global struggle. As today's threat actors become more determined and organized, isolated efforts to detect and reveal threats are no longer effective. Although challenging, this situation can be significantly changed if information about security incidents is collected, shared and analyzed across organizations. To this end, different exchange data formats such as STIX, CyBOX, or IODEF have been recently proposed and numerous CERTs are adopting these threat intelligence standards to share tactical and technical threat insights. However, managing, analyzing and correlating the vast amount of data available from different sources to identify relevant attack patterns still remains an open problem. In this paper we present Mantis, a platform for threat intelligence that enables the unified analysis of different standards and the correlation of threat data trough a novel type-agnostic similarity algorithm based on attributed graphs. Its unified representation allows the security analyst to discover similar and related threats by linking patterns shared between seemingly unrelated attack campaigns through queries of different complexity. We evaluate the performance of Mantis as an information retrieval system for threat intelligence in different experiments. In an evaluation with over 14,000 CyBOX objects, the platform enables retrieving relevant threat reports with a mean average precision of 80%, given only a single object from an incident, such as a file or an HTTP request. We further illustrate the performance of this analysis in two case studies with the attack campaigns Stuxnet and Regin.
Oblivious Random Access Machine (ORAM) enables a client to access her data without leaking her access patterns. Existing client-efficient ORAMs either achieve O(log N) client-server communication blowup without heavy computation, or O(1) blowup but with expensive homomorphic encryptions. It has been shown that O(log N) bandwidth blowup might not be practical for certain applications, while schemes with O(1) communication blowup incur even more delay due to costly homomorphic operations. In this paper, we propose a new distributed ORAM scheme referred to as Shamir Secret Sharing ORAM (S3ORAM), which achieves O(1) client-server bandwidth blowup and O(1) blocks of client storage without relying on costly partial homomorphic encryptions. S3ORAM harnesses Shamir Secret Sharing, tree-based ORAM structure and a secure multi-party multiplication protocol to eliminate costly homomorphic operations and, therefore, achieves O(1) client-server bandwidth blowup with a high computational efficiency. We conducted comprehensive experiments to assess the performance of S3ORAM and its counterparts on actual cloud environments, and showed that S3ORAM achieves three orders of magnitude lower end-to-end delay compared to alternatives with O(1) client communication blowup (Onion-ORAM), while it is one order of magnitude faster than Path-ORAM for a network with a moderate bandwidth quality. We have released the implementation of S3ORAM for further improvement and adaptation.
"Our Laws are not generally known; they are kept secret by the small group of nobles who rule us. We are convinced that these ancient laws are scrupulously administered; nevertheless it is an extremely painful thing to be ruled by laws that one does not know."–Franz Kafka, Parables and Paradoxes. Post 9/11, journalists, scholars and activists have pointed out that it secret laws - a body of law whose details and sometime mere existence is classified as top secret - were on the rise in all three branches of the US government due to growing national security concerns. Amid heated current debates on governmental wishes for exceptional access to encrypted digital data, one of the key issues is: which mechanisms can be put in place to ensure that government agencies follow agreed-upon rules in a manner which does not compromise national security objectives? This promises to be especially challenging when the rules, according to which access to encrypted data is granted, may themselves be secret. In this work we show how the use of cryptographic protocols, and in particular, the idea of zero knowledge proofs can ensure accountability and transperancy of the government in this extraordinary, seemingly deadlocked, setting. We propose an efficient record-keeping infrastructure with versatile publicly verifiable audits that preserve (information-theoretic) privacy of record contents as well as of the rules by which the records are attested to abide. Our protocol is based on existing blockchain and cryptographic tools including commitments and zero-knowledge SNARKs, and satisfies the properties of indelibility (i.e., no back-dating), perfect data privacy, public auditability of secret data with secret laws, accountable deletion, and succinctness. We also propose a variant scheme where entities can be required to pay fees based on record contents (e.g., for violating regulations) while still preserving privacy. Our scheme can be directly instantiated on the Ethereum blockchain (and a simplified version with weaker guarantees can be instantiated with Bitcoin).
Vulnerability being the buzz word in the modern time is the most important jargon related to software and operating system. Since every now and then, software is developed some loopholes and incompleteness lie in the development phase, so there always remains a vulnerability of abruptness in it which can come into picture anytime. Detecting vulnerability is one thing and predicting its occurrence in the due course of time is another thing. If we get to know the vulnerability of any software in the due course of time then it acts as an active alarm for the developers to again develop sound and improvised software the second time. The proposal talks about the implementation of the idea using the artificial neural network, where different data sets are being given as input for being used for further analysis for successful results. As of now, there are models for studying the vulnerabilities in the software and networks, this paper proposal in addition to the current work, will throw light on the predictability of vulnerabilities over the due course of time.
In video surveillance, face recognition (FR) systems seek to detect individuals of interest appearing over a distributed network of cameras. Still-to-video FR systems match faces captured in videos under challenging conditions against facial models, often designed using one reference still per individual. Although CNNs can achieve among the highest levels of accuracy in many real-world FR applications, state-of-the-art CNNs that are suitable for still-to-video FR, like trunk-branch ensemble (TBE) CNNs, represent complex solutions for real-time applications. In this paper, an efficient CNN architecture is proposed for accurate still-to-video FR from a single reference still. The CCM-CNN is based on new cross-correlation matching (CCM) and triplet-loss optimization methods that provide discriminant face representations. The matching pipeline exploits a matrix Hadamard product followed by a fully connected layer inspired by adaptive weighted cross-correlation. A triplet-based training approach is proposed to optimize the CCM-CNN parameters such that the inter-class variations are increased, while enhancing robustness to intra-class variations. To further improve robustness, the network is fine-tuned using synthetically-generated faces based on still and videos of non-target individuals. Experiments on videos from the COX Face and Chokepoint datasets indicate that the CCM-CNN can achieve a high level of accuracy that is comparable to TBE-CNN and HaarNet, but with a significantly lower time and memory complexity. It may therefore represent the better trade-off between accuracy and complexity for real-time video surveillance applications.
With crimes on the rise all around the world, video surveillance is becoming more important day by day. Due to the lack of human resources to monitor this increasing number of cameras manually, new computer vision algorithms to perform lower and higher level tasks are being developed. We have developed a new method incorporating the most acclaimed Histograms of Oriented Gradients, the theory of Visual Saliency and the saliency prediction model Deep Multi-Level Network to detect human beings in video sequences. Furthermore, we implemented the k - Means algorithm to cluster the HOG feature vectors of the positively detected windows and determined the path followed by a person in the video. We achieved a detection precision of 83.11% and a recall of 41.27%. We obtained these results 76.866 times faster than classification on normal images.
This work introduces concepts and algorithms along with a case study validating them, to enhance the event detection, pattern recognition and anomaly identification results in real life video surveillance. The motivation for the work underlies in the observation that human behavioral patterns in general continuously evolve and adapt with time, rather than being static. First, limitations in existing work with respect to this phenomena are identified. Accordingly, the notion and algorithms of Dynamic Clustering are introduced in order to overcome these drawbacks. Correspondingly, we propose the concept of maintaining two separate sets of data in parallel, namely the Normal Plane and the Anomaly Plane, to successfully achieve the task of learning continuously. The practicability of the proposed algorithms in a real life scenario is demonstrated through a case study. From the analysis presented in this work, it is evident that a more comprehensive analysis, closely following human perception can be accomplished by incorporating the proposed notions and algorithms in a video surveillance event.
Detecting faces and heads appearing in video feeds are challenging tasks in real-world video surveillance applications due to variations in appearance, occlusions and complex backgrounds. Recently, several CNN architectures have been proposed to increase the accuracy of detectors, although their computational complexity can be an issue, especially for realtime applications, where faces and heads must be detected live using high-resolution cameras. This paper compares the accuracy and complexity of state-of-the-art CNN architectures that are suitable for face and head detection. Single pass and region-based architectures are reviewed and compared empirically to baseline techniques according to accuracy and to time and memory complexity on images from several challenging datasets. The viability of these architectures is analyzed with real-time video surveillance applications in mind. Results suggest that, although CNN architectures can achieve a very high level of accuracy compared to traditional detectors, their computational cost can represent a limitation for many practical real-time applications.
With the increasing scale of the network, the power information system has many characteristics, such as large number of nodes, complicated structure, diverse network protocols and abundant data, which make the network intrusion detection system difficult to detect real alarms. The current security technologies cannot meet the actual power system network security operation and protection requirements. Based on the attacker ability, the vulnerability information and the existing security protection configuration, we construct the attack sub-graphs by using the parallel distributed computing method and combine them into the whole network attack graph. The vulnerability exploit degree, attacker knowledge, attack proficiency, attacker willingness and the confidence level of the attack evidence are used to construct the security evaluation index system of the power information network system to calculate the attack probability value of each node of the attack graph. According to the probability of occurrence of each node attack, the pre-order attack path will be formed and then the most likely attack path and attack targets will be got to achieve the identification of attack intent.
In the Internet of Things (IoT), smart devices are connected using various communication protocols, such as Wi-Fi, ZigBee. Some IoT devices have multiple built-in communication modules. If an IoT device equipped with multiple communication protocols is compromised by an attacker using one communication protocol (e.g., Wi-Fi), it can be exploited as an entry point to the IoT network. Another protocol (e.g., ZigBee) of this IoT device could be used to exploit vulnerabilities of other IoT devices using the same communication protocol. In order to find potential attacks caused by this kind of cross-protocol devices, we group IoT devices based on their communication protocols and construct a graphical security model for each group of devices using the same communication protocol. We combine the security models via the cross-protocol devices and compute hidden attack paths traversing different groups of devices. We use two use cases in the smart home scenario to demonstrate our approach and discuss some feasible countermeasures.
Identity-Based Encryption (IBE) was introduced as an elegant concept for secure data exchange due to its simplified key management by specifically addressing the asymmetric key distribution problems in multi-user scenarios. In the context of ad-hoc network connections that are of particular importance in the emerging Internet of Things, the simple key discovery procedures as provided by IBE are very beneficial in many situations. In this work we demonstrate for the first time that IBE has become practical even for a range of embedded devices that are populated with low-cost ARM Cortex-M microcontrollers or reconfigurable hardware components. More precisely, we adopt the IBE scheme proposed by Ducas et al. at ASIACRYPT 2014 based on the RLWE problem for which we provide implementation results for two security levels on the aforementioned embedded platforms. We give evidence that the implementations of the basic scheme are efficient, as for a security level of 80 bits it requires 103 ms and 36 ms for encryption and decryption, respectively, on the smallest ARM Cortex-M0 microcontroller.
By using generalized regression neural network clustering analysis, effective clustering of five kinds of network intrusion behavior modes is carried out. First of all, intrusion data is divided into five categories by making use of fuzzy C means clustering algorithm. Then, the samples that are closet to the center of each class in the clustering results are taken as the clustering training samples of generalized neural network for the data training, and the results output by the training are the individual owned invasion category. The experimental results showed that the new algorithm has higher classification accuracy of network intrusion ways, which can provide more reliable data support for the prevention of the network intrusion.
More and more medical data are shared, which leads to disclosure of personal privacy information. Therefore, the construction of medical data privacy preserving publishing model is of great value: not only to make a non-correspondence between the released information and personal identity, but also to maintain the data utility after anonymity. However, there is an inherent contradiction between the anonymity and the data utility. In this paper, a Principal Component Analysis-Grey Relational Analysis (PCA-GRA) K anonymous algorithm is proposed to improve the data utility effectively under the premise of anonymity, in which the association between quasi-identifiers and the sensitive information is reckoned as a criterion to control the generalization hierarchy. Compared with the previous anonymity algorithms, results show that the proposed PCA-GRA K anonymous algorithm has achieved significant improvement in data utility from three aspects, namely information loss, feature maintenance and classification evaluation performance.
Organizations face the issue of how to best allocate their security resources. Thus, they need an accurate method for assessing how many new vulnerabilities will be reported for the operating systems (OSs) they use in a given time period. Our approach consists of clustering vulnerabilities by leveraging the text information within vulnerability records, and then simulating the mean value function of vulnerabilities by relaxing the monotonic intensity function assumption, which is prevalent among the studies that use software reliability models (SRMs) and nonhomogeneous Poisson process (NHPP) in modeling. We applied our approach to the vulnerabilities of four OSs: Windows, Mac, IOS, and Linux. For the OSs analyzed in terms of curve fitting and prediction capability, our results, compared to a power-law model without clustering issued from a family of SRMs, are more accurate in all cases we analyzed.