Shah, Imran Ali, Kapoor, Nitika.
2021.
To Detect and Prevent Black Hole Attack in Mobile Ad Hoc Network. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Mobile Ad hoc Networks ‘MANETs’ are still defenseless against peripheral threats due to the fact that this network has vulnerable access and also the absence of significant fact of administration. The black hole attack is a kind of some routing attack, in this type of attack the attacker node answers to the Route Requests (RREQs) thru faking and playing itself as an adjacent node of the destination node in order to get through the data packets transported from the source node. To counter this situation, we propose to deploy some nodes (exhibiting some distinctive functionality) in the network called DPS (Detection and Prevention System) nodes that uninterruptedly monitor the RREQs advertised by all other nodes in the networks. DPS nodes target to satisfy the set objectives in which it has to sense the mischievous nodes by detecting the activities of their immediate neighbor. In the case, when a node demonstrates some peculiar manners, which estimates according to the experimental data, DPS node states that particular distrustful node as black hole node by propagation of a threat message to all the remaining nodes in the network. A protocol with a clustering approach in AODV routing protocol is used to sense and avert the black hole attack in the mentioned network. Consequently, empirical evaluation shows that the black hole node is secluded and prohibited from the whole system and is not allowed any data transfer from any node thereafter.
Singh, Shirish, Kaiser, Gail.
2021.
Metamorphic Detection of Repackaged Malware. 2021 IEEE/ACM 6th International Workshop on Metamorphic Testing (MET). :9–16.
Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset.1 We perform an extensive study on other publicly available datasets to show our approach's effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.
Abdelmonem, Salma, Seddik, Shahd, El-Sayed, Rania, Kaseb, Ahmed S..
2021.
Enhancing Image-Based Malware Classification Using Semi-Supervised Learning. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :125–128.
Malicious software (malware) creators are constantly mutating malware files in order to avoid detection, resulting in hundreds of millions of new malware every year. Therefore, most malware files are unlabeled due to the time and cost needed to label them manually. This makes it very challenging to perform malware detection, i.e., deciding whether a file is malware or not, and malware classification, i.e., determining the family of the malware. Most solutions use supervised learning (e.g., ResNet and VGG) whose accuracy degrades significantly with the lack of abundance of labeled data. To solve this problem, this paper proposes a semi-supervised learning model for image-based malware classification. In this model, malware files are represented as grayscale images, and semi-supervised learning is carefully selected to handle the plethora of unlabeled data. Our proposed model is an enhanced version of the ∏-model, which makes it more accurate and consistent. Experiments show that our proposed model outperforms the original ∏-model by 4% in accuracy and three other supervised models by 6% in accuracy especially when the ratio of labeled samples is as low as 20%.
Lee, Shan-Hsin, Lan, Shen-Chieh, Huang, Hsiu-Chuan, Hsu, Chia-Wei, Chen, Yung-Shiu, Shieh, Shiuhpyng.
2021.
EC-Model: An Evolvable Malware Classification Model. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Malware evolves quickly as new attack, evasion and mutation techniques are commonly used by hackers to build new malicious malware families. For malware detection and classification, multi-class learning model is one of the most popular machine learning models being used. To recognize malicious programs, multi-class model requires malware types to be predefined as output classes in advance which cannot be dynamically adjusted after the model is trained. When a new variant or type of malicious programs is discovered, the trained multi-class model will be no longer valid and have to be retrained completely. This consumes a significant amount of time and resources, and cannot adapt quickly to meet the timely requirement in dealing with dynamically evolving malware types. To cope with the problem, an evolvable malware classification deep learning model, namely EC-Model, is proposed in this paper which can dynamically adapt to new malware types without the need of fully retraining. Consequently, the reaction time can be significantly reduced to meet the timely requirement of malware classification. To our best knowledge, our work is the first attempt to adopt multi-task, deep learning for evolvable malware classification.
Yang, Chen, Yang, Zepeng, Hou, Jia, Su, Yang.
2021.
A Lightweight Full Homomorphic Encryption Scheme on Fully-connected Layer for CNN Hardware Accelerator achieving Security Inference. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1–4.
The inference results of neural network accelerators often involve personal privacy or business secrets in intelligent systems. It is important for the safety of convolutional neural network (CNN) accelerator to prevent the key data and inference result from being leaked. The latest CNN models have started to combine with fully homomorphic encryption (FHE), ensuring the data security. However, the computational complexity, data storage overhead, inference time are significantly increased compared with the traditional neural network models. This paper proposed a lightweight FHE scheme on fully-connected layer for CNN hardware accelerator to achieve security inference, which not only protects the privacy of inference results, but also avoids excessive hardware overhead and great performance degradation. Compared with state-of-the-art works, this work reduces computational complexity by approximately 90% and decreases ciphertext size by 87%∼95%.
Pathak, Aditya Kumar, Saguna, Saguna, Mitra, Karan, Åhlund, Christer.
2021.
Anomaly Detection using Machine Learning to Discover Sensor Tampering in IoT Systems. ICC 2021 - IEEE International Conference on Communications. :1–6.
With the rapid growth of the Internet of Things (IoT) applications in smart regions/cities, for example, smart healthcare, smart homes/offices, there is an increase in security threats and risks. The IoT devices solve real-world problems by providing real-time connections, data and information. Besides this, the attackers can tamper with sensors, add or remove them physically or remotely. In this study, we address the IoT security sensor tampering issue in an office environment. We collect data from real-life settings and apply machine learning to detect sensor tampering using two methods. First, a real-time view of the traffic patterns is considered to train our isolation forest-based unsupervised machine learning method for anomaly detection. Second, based on traffic patterns, labels are created, and the decision tree supervised method is used, within our novel Anomaly Detection using Machine Learning (AD-ML) system. The accuracy of the two proposed models is presented. We found 84% with silhouette metric accuracy of isolation forest. Moreover, the result based on 10 cross-validations for decision trees on the supervised machine learning model returned the highest classification accuracy of 91.62% with the lowest false positive rate.
Priyadarshan, Pradosh, Sarangi, Prateek, Rath, Adyasha, Panda, Ganapati.
2021.
Machine Learning Based Improved Malware Detection Schemes. 2021 11th International Conference on Cloud Computing, Data Science Engineering (Confluence). :925–931.
In recent years, cyber security has become a challenging task to protect the networks and computing systems from various types of digital attacks. Therefore, to preserve these systems, various innovative methods have been reported and implemented in practice. However, still more research work needs to be carried out to have malware free computing system. In this paper, an attempt has been made to develop simple but reliable ML based malware detection systems which can be implemented in practice. Keeping this in view, the present paper has proposed and compared the performance of three ML based malware detection systems applicable for computer systems. The proposed methods include k-NN, RF and LR for detection purpose and the features extracted comprise of Byte and ASM. The performance obtained from the simulation study of the proposed schemes has been evaluated in terms of ROC, Log loss plot, accuracy, precision, recall, specificity, sensitivity and F1-score. The analysis of the various results clearly demonstrates that the RF based malware detection scheme outperforms the model based on k-NN and LR The efficiency of detection of proposed ML models is either same or comparable to deep learning-based methods.
Qin, Zhenhui, Tong, Rui, Wu, Xingjun, Bai, Guoqiang, Wu, Liji, Su, Linlin.
2021.
A Compact Full Hardware Implementation of PQC Algorithm NTRU. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :792–797.
With the emergence and development of quantum computers, the traditional public-key cryptography (PKC) is facing the risk of being cracked. In order to resist quantum attacks and ensure long-term communication security, NIST launched a global collection of Post Quantum Cryptography (PQC) standards in 2016, and it is currently in the third round of selection. There are three Lattice-based PKC algorithms that stand out, and NTRU is one of them. In this article, we proposed the first complete and compact full hardware implementation of NTRU algorithm submitted in the third round. By using one structure to complete the design of the three types of complex polynomial multiplications in the algorithm, we achieved better performance while reducing area costs.
Sunny, Leya Elizabeth, Paul, Varghese.
2021.
Strengthening Security of Images Using Dynamic S-Boxes for Cryptographic Applications. 2021 Fourth International Conference on Microelectronics, Signals Systems (ICMSS). :1–5.
Security plays a paradigmatic role in the area of networking. The main goal of security is to protect these networks which contains confidential data against various kinds of attacks. By changing parameters like key size, increasing the rounds of iteration and finally using confusion box as the S-box, the strength of the cryptographic algorithms can be incremented. By using the Data Encryption Standard (DES), the images can be secured with the help of Dynamic S-boxes. Each of these 8 S-boxes contain 64 elements. Each row contains elements in the range 0–15 and are unique. Our proposed system generates these S-boxes dynamically depending on the key. The evaluation of this Dynamic S-box and DES shows much fruitful results over factors like Non-linearity, Strict Avalanche criterion, Balance, memory and time required for implementation using images.
Mohandas, Pavitra, Santhosh Kumar, Sudesh Kumar, Kulyadi, Sandeep Pai, Shankar Raman, M J, S, Vasan V, Venkataswami, Balaji.
2021.
Detection of Malware using Machine Learning based on Operation Code Frequency. 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). :214–220.
One of the many methods for identifying malware is to disassemble the malware files and obtain the opcodes from them. Since malware have predominantly been found to contain specific opcode sequences in them, the presence of the same sequences in any incoming file or network content can be taken up as a possible malware identification scheme. Malware detection systems help us to understand more about ways on how malware attack a system and how it can be prevented. The proposed method analyses malware executable files with the help of opcode information by converting the incoming executable files to assembly language thereby extracting opcode information (opcode count) from the same. The opcode count is then converted into opcode frequency which is stored in a CSV file format. The CSV file is passed to various machine learning algorithms like Decision Tree Classifier, Random Forest Classifier and Naive Bayes Classifier. Random Forest Classifier produced the highest accuracy and hence the same model was used to predict whether an incoming file contains a potential malware or not.