Biblio
Quantum technology is a new field of physics and engineering. In emerging areas like Quantum Cryptography, Quantum Computing etc, Quantum circuits play a key role. Quantum circuit is a model for Quantum computation, the computation process of Quantum gates are based on reversible logic. Encoder and Decoder are designed using Quantum gates, and synthesized in the QCAD simulator. Quantum error correction (QEC) is essential to protect quantum information from errors due to quantum noise and decoherence. It is also use to achieve fault-tolerant quantum computation that deals with noise on stored information, faulty quantum gates and faulty measurements.
The RFID based communication between objects within the framework of IoT is potentially very efficient in terms of power requirements and system complexity. The new design incorporating the emerging chipless RFID tags has the potential to make the system more efficient and simple. However, these systems are prone to privacy and security risks and these challenges associated with such systems have not been addressed appropriately in the broader IoT framework. In this context, a lightweight collision free algorithm based on n-bit pseudo random number generator, X-OR hash function, and rotations for chipless RFID system is presented. The algorithm has been implemented on an 8-bit open-loop resonator based chipless RFID tag based system and is validated using BASYS 2 FPGA board based platform. The proposed scheme has been shown to possess security against various attacks such as Denial of Service (DoS), tag/reader anonymity, and tag impersonation.
Transition noise and remanence noise are the two most important types of media noise in heat-assisted magnetic recording. We examine two methods (spatial splitting and principal components analysis) to distinguish them: both techniques show similar trends with respect to applied field and grain pitch (GP). It was also found that PW50can be affected by GP and reader design, but is almost independent of write field and bit length (larger than 50 nm). Interestingly, our simulation shows a linear relationship between jitter and PW50NSRrem, which agrees qualitatively with experimental results.
Code churn has been successfully used to identify defect inducing changes in software development. Our recent analysis of the cross-release code churn showed that several design metrics exhibit moderate correlation with the number of defects in complex systems. The goal of this paper is to explore whether cross-release code churn can be used to identify critical design change and contribute to prediction of defects for software in evolution. In our case study, we used two types of data from consecutive releases of open-source projects, with and without cross-release code churn, to build standard prediction models. The prediction models were trained on earlier releases and tested on the following ones, evaluating the performance in terms of AUC, GM and effort aware measure Pop. The comparison of their performance was used to answer our research question. The obtained results showed that the prediction model performs better when cross-release code churn is included. Practical implication of this research is to use cross-release code churn to aid in safe planning of next release in software development.
The main objective of this research work is to enhance the data storage capacity of the QR codes. By achieving the research aim, we can visualize rapid increase in application domains of QR Codes, mostly for smart cities where one needs to store bulk amount of data. Nowadays India is experiencing demonetization step taken by Prime Minister of the country and QR codes can play major role for this step. They are also helpful for cashless society as many vendors have registered themselves with different e-wallet companies like paytm, freecharge etc. These e-wallet companies have installed QR codes at cash counter of such vendors. Any time when a customer wants to pay his bills, he only needs to scan that particular QR code. Afterwards the QR code decoder application start working by taking necessary action like opening payment gateway etc. So, objective of this research study focuses on solving this issue by applying proposed methodology.
The existing research on the Internet of Things(IoT) security mainly focuses on attack and defense on a single protocol layer. Increasing and ubiquitous use of loT also makes it vulnerable to many attacks. An attacker try to performs the intelligent, brutal and stealthy attack that can reduce the risk of being detected. In these kinds of attacks, the attackers not only restrict themselves to a single layer of protocol stack but they also try to decrease the network performance and throughput by a simultaneous and coordinated attack on different layers. A new class of attacks, termed as cross-layer attack became prominent due to lack of interaction between MAC, routing and upper layers. These attacks achieve the better effect with reduced cost. Research has been done on cross-layer attacks in other domains like Cognitive Radio Network(CRN), Wireless Sensor Networks(WSN) and ad-hoc networks. However, our proposed scheme of cross-layer attack in IoT is the first paper to the best of our knowledge. In this paper, we have proposed Rank Manipulation and Drop Delay(RMDD) cross-layer attack in loT, we have investigated how small intensity attack on Routing protocol for low power lossy networks (RPL) degrades the overall application throughput. We have exploited the Rank system of the RPL protocol to implement the attacks. Rank is given to each node in the graph, and it shows its position in the network. If the rank could be manipulated in some manner, then the network topology can be modified. Simulation results demonstrate that the proposed attacks degrade network performance very much in terms of the throughput, latency, and connectivity.
Although the vision of 5G is to accommodate billions IoT devices and applications, its success depends very much on its ability to provide enhanced and affordable security. This paper introduces an Identity Federation solution which reuses the SIM authentication for cellular IoT devices enabling single-sign-on. The proposed solution alleviates the IoT provider's burden of device identity management at the same time as the operational costs are reduced considerably. The proposed solution is realized by open source software for LTE, identity management and IoT.
Fog computing provides computing, storage and communication resources at the edge of the network, near the physical world. Subsequently, end devices nearing the physical world can have interesting properties such as short delays, responsiveness, optimized communications and privacy. However, these end devices have low stability and are prone to failures. There is consequently a need for failure management protocols for IoT applications in the Fog. The design of such solutions is complex due to the specificities of the environment, i.e., (i) dynamic infrastructure where entities join and leave without synchronization, (ii) high heterogeneity in terms of functions, communication models, network, processing and storage capabilities, and, (iii) cyber-physical interactions which introduce non-deterministic and physical world's space and time dependent events. This paper presents a fault tolerance approach taking into account these three characteristics of the Fog-IoT environment. Fault tolerance is achieved by saving the state of the application in an uncoordinated way. When a failure is detected, notifications are propagated to limit the impact of failures and dynamically reconfigure the application. Data stored during the state saving process are used for recovery, taking into account consistency with respect to the physical world. The approach was validated through practical experiments on a smart home platform.
This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.
A multipurpose color image watermarking method is presented to provide \textcopyright protection and ownership verification of the multimedia information. For robust color image watermarking, color watermark is utilized to bring universality and immense applicability to the proposed scheme. The cover information is first converted to Red, Green and Blue components image. Each component is transformed in wavelet domain using DWT (Discrete Wavelet Transform) and then decomposition techniques like Singular Value Decomposition (SVD), QR and Schur decomposition are applied. Multiple watermark embedding provides the watermarking scheme free from error (false positive). The watermark is modified by scrambling it using Arnold transform. In the proposed watermarking scheme, robustness and quality is tested with metrics like Peak Signal to Noise Ratio (PSNR) and Normalized Correlation Coefficient (NCC). Further, the proposed scheme is compared with related watermarking schemes.
The evolution of the enterprise computing landscape towards emerging trends such as fog/edge computing and the Industrial Internet of Things (IIoT) are leading to a change of approach to securing computer networks to deal with challenges such as mobility, virtualized infrastructures, dynamic and heterogeneous user contexts and transaction-based interactions. The uncertainty introduced by such dynamicity introduces greater uncertainty into the access control process and motivates the need for risk-based access control decision making. Thus, the traditional perimeter-based security paradigm is increasingly being abandoned in favour of a so called "zero trust networking" (ZTN). In ZTN networks are partitioned into zones with different levels of trust required to access the zone resources depending on the assets protected by the zone. All accesses to sensitive information is subject to rigorous access control based on user and device profile and context. In this paper we outline a policy enforcement framework to address many of open challenges for risk-based access control for ZTN. We specify the design of required policy languages including a generic firewall policy language to express firewall rules. We design a mechanism to map these rules to specific firewall syntax and to install the rules on the firewall. We show the viability of our design with a small proof-of-concept.
Anomaly detection on security logs is receiving more and more attention. Authentication events are an important component of security logs, and being able to produce trustful and accurate predictions minimizes the effort of cyber-experts to stop false attacks. Observed events are classified into Normal, for legitimate user behavior, and Malicious, for malevolent actions. These classes are consistently excessively imbalanced which makes the classification problem harder; in the commonly used Los Alamos dataset, the malicious class comprises only 0.00033% of the total. This work proposes a novel method to extract advanced composite features, and a supervised learning technique for classifying authentication logs trustfully; the models are Random Forest, LogitBoost, Logistic Regression, and ultimately Majority Voting which leverages the predictions of the previous models and gives the final prediction for each authentication event. We measure the performance of our experiments by using the False Negative Rate and False Positive Rate. In overall we achieve 0 False Negative Rate (i.e. no attack was missed), and on average a False Positive Rate of 0.0019.
In the present paper, the problem of networked control system (NCS) cyber security is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The proposed results are about the so-called false data injection attacks and show how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach.
Symmetric Searchable Encryption (SSE) has received wide attention due to its practical application in searching on encrypted data. Beyond search, data addition and deletion are also supported in dynamic SSE schemes. Unfortunately, these update operations leak some information of updated data. To address this issue, forward-secure SSE is actively explored to protect the relations of newly updated data and previously searched keywords. On the contrary, little work has been done in backward security, which enforces that search should not reveal information of deleted data. In this paper, we propose the first practical and non-interactive backward-secure SSE scheme. In particular, we introduce a new form of symmetric encryption, named symmetric puncturable encryption (SPE), and construct a generic primitive from simple cryptographic tools. Based on this primitive, we then present a backward-secure SSE scheme that can revoke a server's searching ability on deleted data. We instantiate our scheme with a practical puncturable pseudorandom function and implement it on a large dataset. The experimental results demonstrate its efficiency and scalability. Compared to the state-of-the-art, our scheme achieves a speedup of almost 50x in search latency, and a saving of 62% in server storage consumption.
This paper provides a Common Vulnerability Scoring System (CVSS) metric-based technique for classifying and analysing the prevailing Computer Network Security Vulnerabilities and Threats (CNSVT). The problem that is addressed in this paper, is that, at the time of writing this paper, there existed no effective approaches for analysing and classifying CNSVT for purposes of assessments based on CVSS metrics. The authors of this paper have achieved this by generating a CVSS metric-based dynamic Vulnerability Analysis Classification Countermeasure (VACC) criterion that is able to rank vulnerabilities. The CVSS metric-based VACC has allowed the computation of vulnerability Similarity Measure (VSM) using the Hamming and Euclidean distance metric functions. Nevertheless, the CVSS-metric based on VACC also enabled the random measuring of the VSM for a selected number of vulnerabilities based on the [Ma-Ma], [Ma-Mi], [Mi-Ci], [Ma-Ci] ranking score. This is a technique that is aimed at allowing security experts to be able to conduct proper vulnerability detection and assessments across computer-based networks based on the perceived occurrence by checking the probability that given threats will occur or not. The authors have also proposed high-level countermeasures of the vulnerabilities that have been listed. The authors have evaluated the CVSS-metric based VACC and the results are promising. Based on this technique, it is worth noting that these propositions can help in the development of stronger computer and network security tools.
Trustworthiness is a paramount concern for users and customers in the selection of a software solution, specially in the context of complex and dynamic environments, such as Cloud and IoT. However, assessing and benchmarking trustworthiness (worthiness of software for being trusted) is a challenging task, mainly due to the variety of application scenarios (e.g., businesscritical, safety-critical), the large number of determinative quality attributes (e.g., security, performance), and last, but foremost, due to the subjective notion of trust and trustworthiness. In this paper, we present trustworthiness as a measurable notion in relative terms based on security attributes and propose an approach for the assessment and benchmarking of software. The main goal is to build a trustworthiness assessment model based on software metrics (e.g., Cyclomatic Complexity, CountLine, CBO) that can be used as indicators of software security. To demonstrate the proposed approach, we assessed and ranked several files and functions of the Mozilla Firefox project based on their trustworthiness score and conducted a survey among several software security experts in order to validate the obtained rank. Results show that our approach is able to provide a sound ranking of the benchmarked software.
Many test case prioritization criteria have been proposed for speeding up fault detection. Among them, similarity-based approaches give priority to the test cases that are the most dissimilar from those already selected. However, the proposed criteria do not scale up to handle the many thousands or even some millions test suite sizes of modern industrial systems and simple heuristics are used instead. We introduce the FAST family of test case prioritization techniques that radically changes this landscape by borrowing algorithms commonly exploited in the big data domain to find similar items. FAST techniques provide scalable similarity-based test case prioritization in both white-box and black-box fashion. The results from experimentation on real world C and Java subjects show that the fastest members of the family outperform other black-box approaches in efficiency with no significant impact on effectiveness, and also outperform white-box approaches, including greedy ones, if preparation time is not counted. A simulation study of scalability shows that one FAST technique can prioritize a million test cases in less than 20 minutes.
Permissionless blockchains allow the execution of arbitrary programs (called smart contracts), enabling mutually untrusted entities to interact without relying on trusted third parties. Despite their potential, repeated security concerns have shaken the trust in handling billions of USD by smart contracts. To address this problem, we present Securify, a security analyzer for Ethereum smart contracts that is scalable, fully automated, and able to prove contract behaviors as safe/unsafe with respect to a given property. Securify's analysis consists of two steps. First, it symbolically analyzes the contract's dependency graph to extract precise semantic information from the code. Then, it checks compliance and violation patterns that capture sufficient conditions for proving if a property holds or not. To enable extensibility, all patterns are specified in a designated domain-specific language. Securify is publicly released, it has analyzed 18K contracts submitted by its users, and is regularly used to conduct security audits by experts. We present an extensive evaluation of Securify over real-world Ethereum smart contracts and demonstrate that it can effectively prove the correctness of smart contracts and discover critical violations.
The ever-increasing number of malware samples demands for automated tools that aid the analysts in the reverse engineering of complex malicious binaries. Frequently, malware communicates over an encrypted channel with external network resources under the control of malicious actors, such as Command and Control servers that control the botnet of infected machines. Hence, a key aspect in malware analysis is uncovering and understanding the semantics of network communications. In this paper we present SysTaint, a semi-automated tool that runs malware samples in a controlled environment and analyzes their execution to support the analyst in identifying the functions involved in the communication and the exchanged data. Our evaluation on four banking Trojan samples from different families shows that SysTaint is able to handle and inspect encrypted network communications, obtaining useful information on the data being sent and received, on how each sample processes this data, and on the inner portions of code that deal with the data processing.
Infrastructure-as-a-Service (IaaS), more generally the "cloud," changed the landscape of system operations on the Internet. Clouds' elasticity allow operators to rapidly allocate and use resources as needed, from virtual machines, to storage, to IP addresses, which is what made clouds popular. We show that the dynamic component paired with developments in trust-based ecosystems (e.g., TLS certificates) creates so far unknown attacks. We demonstrate that it is practical to allocate IP addresses to which stale DNS records point. Considering the ubiquity of domain validation in trust ecosystems, like TLS, an attacker can then obtain a valid and trusted certificate. The attacker can then impersonate the service, exploit residual trust for phishing, or might even distribute malicious code. Even worse, an aggressive attacker could succeed in less than 70 seconds, well below common time-to-live (TTL) for DNS. In turn, she could exploit normal service migrations to obtain a valid certificate, and, worse, she might not be bound by DNS records being (temporarily) stale. We introduce a new authentication method for trust-based domain validation, like IETF's automated certificate management environment (ACME), that mitigates staleness issues without incurring additional certificate requester effort by incorporating the existing trust of a name into the validation process. Based on previously published work [1]. [1] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, Giovanni Vigna. February 2018. Cloud Strife: Mitigating the Security Risks of Domain-Validated Certificates. In Proceedings of the 25th Network and Distributed Systems Security Symposium (NDSS '18). Internet Society (ISOC). DOI: 10.14722/ndss.2018.23327. URL: https://doi.org/10.14722/nd