Biblio
Current BLE transmitters are susceptible to selective jamming due to long dwell times in a channel. To mitigate these attacks, we propose physical-layer security through an ultra-fast bit-level frequency-hopping (FH) scheme by exploiting the frequency agility of bulk acoustic wave resonators (BAW). Here we demonstrate the first integrated bit-level FH transmitter (TX) that hops at 1$μ$s period and uses data-driven random dynamic channel selection to enable secure wireless communications with additional data encryption. This system consists of a time-interleaved BAW-based TX implemented in 65nm CMOS technology with 80MHz coverage in the 2.4GHz ISM band and a measured power consumption of 10.9mW from 1.1V supply.
In recent years, new and devastating cyber attacks amplify the need for robust cybersecurity practices. Preventing novel cyber attacks requires the invention of Intrusion Detection Systems (IDSs), which can identify previously unseen attacks. Many researchers have attempted to produce anomaly - based IDSs, however they are not yet able to detect malicious network traffic consistently enough to warrant implementation in real networks. Obviously, it remains a challenge for the security community to produce IDSs that are suitable for implementation in the real world. In this paper, we propose a new approach using a Deep Belief Network with a combination of supervised and unsupervised machine learning methods for port scanning attacks detection - the task of probing enterprise networks or Internet wide services, searching for vulnerabilities or ways to infiltrate IT assets. Our proposed approach will be tested with network security datasets and compared with previously existing methods.
Aggregate Computing is a promising paradigm for coordinating large numbers of possibly situated devices, typical of scenarios related to the Internet of Things, smart cities, drone coordination, and mass urban events. Currently, little work has been devoted to study and improve security in aggregate programs, and existing works focus solely on application-level countermeasures. Those security systems work under the assumption that the underlying computational model is respected; however, so-called Byzantine behaviour violates such assumption. In this paper, we discuss how Byzantine behaviours can hinder an aggregate program, and exploit application-level protection for creating bigger disruption. We discuss how the blockchain technology can mitigate these attacks by enforcing behaviours consistent with the expected operational semantics, with no impact on the application logic.
Access control for information has primarily focused on access statically granted to subjects by administrators usually in the context of a specific system. Even if mechanisms are available for access revocation, revocations must still be executed manually by an administrator. However, as physical devices become increasingly embedded and interconnected, access control needs to become an integral part of the resource being protected and be generated dynamically by resources depending on the context in which the resource is being used. In this paper, we discuss a set of scenarios for access control needed in current and future systems and use that to argue that an approach for resources to generate and manage their access control policies dynamically on their own is needed. We discuss some approaches for generating such access control policies that may address the requirements of the scenarios.
With Electricity as a fundamental part of our life, its production has still large, negative environmental impact. Therefore, one strain of research is to optimize electricity usage by avoiding its unnecessary consumption or time its consumption when green energy is available. The shift towards an Advanced Metering Infrastructure (AMI) allows to optimize energy distribution based on the current load at residence level. However, applications such as Demand Management and Advanced Load Forecasting require information further down at device level, which cannot be provided by standard electricity meters nor existing AMIs. Hence, different approaches for appliance monitoring emerged over the past 30 years which are categorized into Intrusive systems requiring multiple distributed sensors and Non-Intrusive systems requiring a single unobtrusive sensor. Although each category has been individually explored, hybrid approaches have received little attention. Our experiments highlight that variable consumer devices (e.g. PCs) are detrimental to the detection performance of non-intrusive systems. We further show that their influence can be inhibited by using sensor data from additional intrusive sensors. Even fairly straightforward sensor fusion techniques lead to a classification performance (F1) gain from 84.88 % to 93.41 % in our test setup. As this highlights the potential to contribute to the global goal of saving energy, we define further research directions for hybrid load monitoring systems.
SQL injection is well known a method of executing SQL queries and retrieving sensitive information from a website connected database. This process poses a threat to those applications which are poorly coded in the today's world. SQL is considered as one of the top 10 vulnerabilities even in 2018. To keep a track of the vulnerabilities that each of the websites are facing, we employ a tool called Acunetix which allows us to find the vulnerabilities of a specific website. This tool also suggests measures on how to ensure preventive measures. Using this implementation, we discover vulnerabilities in an actual website. Such a real-world implementation would be useful for instructional use in a foundational cybersecurity course.
We investigate mobile phone pointing in Spatial Augmented Reality (SAR). Three pointing methods are compared, raycasting, viewport, and tangible (i.e. direct contact), using a five-projector "full" SAR environment with targets distributed on varying surfaces. Participants were permitted free movement in the environment to create realistic variations in target occlusion and target incident angle. Our results show raycast is fastest for high and distant targets, tangible is fastest for targets in close proximity to the user, and viewport performance is in between.
The article considers the approach to identifying potentially unsafe data in program code of embedded systems which can lead to errors and fails in the functioning of equipment. The sources of invalid data are revealed and the process of changing the status of this data in process of static code analysis is shown. The mechanism for annotating functions that operate on unsafe data is described, which allows to control the entire process of using them and thus it will improve the quality of the output code.
Performance is a critical system property of any system, in particular of data-intensive systems, such as image processing systems. We describe a performance engineering method for families of data-intensive systems that is both simple and accurate; the performance of new family members is predicted using models of existing family members. The predictive models are calibrated using static code analysis and regression. Code analysis is used to extract performance profiles, which are used in combination with regression to derive predictive performance models. A case study presents the application for an industrial image processing case, which revealed as benefits the easy application and identification of code performance optimization points.
The paper dwells on the peculiarities of stylometry technologies usage to determine the style of the author publications. Statistical linguistic analysis of the author's text allows taking advantage of text content monitoring based on Porter stemmer and NLP methods to determine the set of stop words. The latter is used in the methods of stylometry to determine the ownership of the analyzed text to a specific author in percentage points. There is proposed a formal approach to the definition of the author's style of the Ukrainian text in the article. The experimental results of the proposed method for determining the ownership of the analyzed text to a particular author upon the availability of the reference text fragment are obtained. The study was conducted on the basis of the Ukrainian scientific texts of a technical area.
For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus equally on functionality and security in both hardware and software development. For critical missions, these systems must be entrusted to perform their intended functions, prevent attacks, and even operate with resilience under attacks. The processor in a critical system must thus provide not only a root of trust, but also a foundation to monitor mission functions, detect anomalies, and perform recovery. We have developed a Lincoln Asymmetric Multicore Processing (LAMP) architecture, which mitigates adversarial cyber effects with separation and cryptography and provides a foundation to build a resilient embedded system. We will describe a design environment that we have created to enable the co-design of functionality and security for mission assurance.
Due to the ever-increasing threat of Reverse Engineering (RE) of Intellectual Property (IP) for malicious gains, camouflaging of logic gates is becoming very important. In this paper, we present experimental demonstration of transistor threshold voltage-defined switch [2] based camouflaged logic gates that can hide six logic functionalities i.e. NAND, AND, NOR, OR, XOR and XNOR. The proposed gates can be used to design the IP, forcing an adversary to perform brute-force guess-and-verify of the underlying functionality–-increasing the RE effort. We propose two flavors of camouflaging, one employing only a pass transistor (NMOS-switch) and the other utilizing a full pass transistor (CMOS-switch). The camouflaged gates are used to design Ring-Oscillators (RO) in ST 65nm technology, one for each functionality, on which we have performed temperature, voltage, and process-variation analysis. We observe that CMOS-switch based camouflaged gate offers a higher performance (\textasciitilde1.5-8X better) than NMOS-switch based gate at an added area cost of only 5%. The proposed gates show functionality till 0.65V. We are also able to reclaim lost performance by dynamically changing the switch gate voltage and show that robust operation can be achieved at lower voltage and under temperature fluctuation.