Visible to the public Biblio

Found 1032 results

Filters: First Letter Of Last Name is V  [Clear All Filters]
2020-06-01
Vishwakarma, Ruchi, Jain, Ankit Kumar.  2019.  A Honeypot with Machine Learning based Detection Framework for defending IoT based Botnet DDoS Attacks. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :1019–1024.

With the tremendous growth of IoT botnet DDoS attacks in recent years, IoT security has now become one of the most concerned topics in the field of network security. A lot of security approaches have been proposed in the area, but they still lack in terms of dealing with newer emerging variants of IoT malware, known as Zero-Day Attacks. In this paper, we present a honeypot-based approach which uses machine learning techniques for malware detection. The IoT honeypot generated data is used as a dataset for the effective and dynamic training of a machine learning model. The approach can be taken as a productive outset towards combatting Zero-Day DDoS Attacks which now has emerged as an open challenge in defending IoT against DDoS Attacks.

2020-05-26
V S, Deepthi, S, Vagdevi.  2018.  Behaviour Analysis and Detection of Blackhole Attacker Node under Reactive Routing Protocol in MANETs. 2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS). :1–5.
Mobile Adhoc networks are wireless adhoc networks that have property of self organizing, less infrastructure, multi hoping, which are designed to work under low power vulnerable environment. Due to its very unique characteristics, there is much chances of threat of malicious nodes within the network. Blackhole attack is a menace in MANETs which redirects all traffic to itself and drops it. This paper’s objective is to analyze the effects of blackhole attack under reactive routing protocol such as Adhoc on Demand Distance Vector routing (AODV). The performance of this protocol is assessed to find the vulnerability of attack and also compared the impact of attack on both AODV, AODV with blackhole and proposed AODV protocols. The analysis is done by simulated using NS- 2.35 and QoS parameters such as Throughput, PDR, and Average Energy Consumed are measured further.
2020-05-22
Varricchio, Valerio, Frazzoli, Emilio.  2018.  Asymptotically Optimal Pruning for Nonholonomic Nearest-Neighbor Search. 2018 IEEE Conference on Decision and Control (CDC). :4459—4466.
Nearest-Neighbor Search (NNS) arises as a key component of sampling-based motion planning algorithms and it is known as their asymptotic computational bottleneck. Algorithms for exact Nearest-Neighbor Search rely on explicit distance comparisons to different extents. However, in motion planning, evaluating distances is generally a computationally demanding task, since the metric is induced by the minimum cost of steering a dynamical system between states. In the presence of driftless nonholonomic constraints, we propose efficient pruning techniques for the k-d tree algorithm that drastically reduce the number of distance evaluations performed during a query. These techniques exploit computationally convenient lower and upper bounds to the geodesic distance of the corresponding sub-Riemannian geometry. Based on asymptotic properties of the reachable sets, we show that the proposed pruning techniques are optimal, modulo a constant factor, and we provide experimental results with the Reeds-Shepp vehicle model.
Vijay, Savinu T., Pournami, P. N..  2018.  Feature Based Image Registration using Heuristic Nearest Neighbour Search. 2018 22nd International Computer Science and Engineering Conference (ICSEC). :1—3.
Image registration is the process of aligning images of the same scene taken at different instances, from different viewpoints or by heterogeneous sensors. This can be achieved either by area based or by feature based image matching techniques. Feature based image registration focuses on detecting relevant features from the input images and attaching descriptors to these features. Matching visual descriptions of two images is a major task in image registration. This feature matching is currently done using Exhaustive Search (or Brute-Force) and Nearest Neighbour Search. The traditional method used for nearest neighbour search is by representing the data as k-d trees. This nearest neighbour search can also be performed using combinatorial optimization algorithms such as Simulated Annealing. This work proposes a method to perform image feature matching by nearest neighbour search done based on Threshold Accepting, a faster version of Simulated Annealing.The experiments performed suggest that the proposed algorithm can produce better results within a minimum number of iterations than many existing algorithms.
2020-05-18
Lal Senanayaka, Jagath Sri, Van Khang, Huynh, Robbersmyr, Kjell G..  2018.  Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks. 2018 XIII International Conference on Electrical Machines (ICEM). :1900–1905.
Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is proposed to detect common faults in the electric powertrains. The proposed method is based on pattern recognition using convolutional neural network to detect effectively not only single faults at constant speed but also multiple faults in variable speed operations. The effectiveness of the proposed method is validated via an in-house experimental setup.
2020-05-15
Sugrim, Shridatt, Venkatesan, Sridhar, Youzwak, Jason A., Chiang, Cho-Yu J., Chadha, Ritu, Albanese, Massimiliano, Cam, Hasan.  2018.  Measuring the Effectiveness of Network Deception. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :142—147.

Cyber reconnaissance is the process of gathering information about a target network for the purpose of compromising systems within that network. Network-based deception has emerged as a promising approach to disrupt attackers' reconnaissance efforts. However, limited work has been done so far on measuring the effectiveness of network-based deception. Furthermore, given that Software-Defined Networking (SDN) facilitates cyber deception by allowing network traffic to be modified and injected on-the-fly, understanding the effectiveness of employing different cyber deception strategies is critical. In this paper, we present a model to study the reconnaissance surface of a network and model the process of gathering information by attackers as interactions with a cyber defensive system that may use deception. To capture the evolution of the attackers' knowledge during reconnaissance, we design a belief system that is updated by using a Bayesian inference method. For the proposed model, we present two metrics based on KL-divergence to quantify the effectiveness of network deception. We tested the model and the two metrics by conducting experiments with a simulated attacker in an SDN-based deception system. The results of the experiments match our expectations, providing support for the model and proposed metrics.

2020-05-11
Vashist, Abhishek, Keats, Andrew, Pudukotai Dinakarrao, Sai Manoj, Ganguly, Amlan.  2019.  Securing a Wireless Network-on-Chip Against Jamming Based Denial-of-Service Attacks. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :320–325.
Wireless Networks-on-Chips (NoCs) have emerged as a panacea to the non-scalable multi-hop data transmission paths in traditional wired NoC architectures. Using low-power transceivers in NoC switches, novel Wireless NoC (WiNoC) architectures have been shown to achieve higher energy efficiency with improved peak bandwidth and reduced on-chip data transfer latency. However, using wireless interconnects for data transfer within a chip makes the on-chip communications vulnerable to various security threats from either external attackers or internal hardware Trojans (HTs). In this work, we propose a mechanism to make the wireless communication in a WiNoC secure against persistent jamming based Denial-of-Service attacks from both external and internal attackers. Persistent jamming attacks on the on-chip wireless medium will cause interference in data transfer over the duration of the attack resulting in errors in contiguous bits, known as burst errors. Therefore, we use a burst error correction code to monitor the rate of burst errors received over the wireless medium and deploy a Machine Learning (ML) classifier to detect the persistent jamming attack and distinguish it from random burst errors. In the event of jamming attack, alternate routing strategies are proposed to avoid the DoS attack over the wireless medium, so that a secure data transfer can be sustained even in the presence of jamming. We evaluate the proposed technique on a secure WiNoC in the presence of DoS attacks. It has been observed that with the proposed defense mechanisms, WiNoC can outperform a wired NoC even in presence of attacks in terms of performance and security. On an average, 99.87% attack detection was achieved with the chosen ML Classifiers. A bandwidth degradation of \textbackslashtextless;3% is experienced in the event of internal attack, while the wireless interconnects are disabled in the presence of an external attacker.
2020-05-08
Vigneswaran, Rahul K., Vinayakumar, R., Soman, K.P., Poornachandran, Prabaharan.  2018.  Evaluating Shallow and Deep Neural Networks for Network Intrusion Detection Systems in Cyber Security. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Intrusion detection system (IDS) has become an essential layer in all the latest ICT system due to an urge towards cyber safety in the day-to-day world. Reasons including uncertainty in finding the types of attacks and increased the complexity of advanced cyber attacks, IDS calls for the need of integration of Deep Neural Networks (DNNs). In this paper, DNNs have been utilized to predict the attacks on Network Intrusion Detection System (N-IDS). A DNN with 0.1 rate of learning is applied and is run for 1000 number of epochs and KDDCup-`99' dataset has been used for training and benchmarking the network. For comparison purposes, the training is done on the same dataset with several other classical machine learning algorithms and DNN of layers ranging from 1 to 5. The results were compared and concluded that a DNN of 3 layers has superior performance over all the other classical machine learning algorithms.
Niemiec, Marcin, Mehic, Miralem, Voznak, Miroslav.  2018.  Security Verification of Artificial Neural Networks Used to Error Correction in Quantum Cryptography. 2018 26th Telecommunications Forum (℡FOR). :1—4.

Error correction in quantum cryptography based on artificial neural networks is a new and promising solution. In this paper the security verification of this method is discussed and results of many simulations with different parameters are presented. The test scenarios assumed partially synchronized neural networks, typical for error rates in quantum cryptography. The results were also compared with scenarios based on the neural networks with random chosen weights to show the difficulty of passive attacks.

2020-05-04
Karmakar, Kallol Krishna, Varadharajan, Vijay, Nepal, Surya, Tupakula, Uday.  2019.  SDN Enabled Secure IoT Architecture. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :581–585.
The Internet of Things (IoT) is increasingly being used in applications ranging from precision agriculture to critical national infrastructure by deploying a large number of resource-constrained devices in hostile environments. These devices are being exploited to launch attacks in cyber systems. As a result, security has become a significant concern in the design of IoT based applications. In this paper, we present a security architecture for IoT networks by leveraging the underlying features supported by Software Defined Networks (SDN). Our security architecture restricts network access to authenticated IoT devices. We use fine granular policies to secure the flows in the IoT network infrastructure and provide a lightweight protocol to authenticate IoT devices. Such an integrated security approach involving authentication of IoT devices and enabling authorized flows can help to protect IoT networks from malicious IoT devices and attacks.
Augusto-Gonzalez, J., Collen, A., Evangelatos, S., Anagnostopoulos, M., Spathoulas, G., Giannoutakis, K. M., Votis, K., Tzovaras, D., Genge, B., Gelenbe, E. et al..  2019.  From Internet of Threats to Internet of Things: A Cyber Security Architecture for Smart Homes. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
The H2020 European research project GHOST - Safe-Guarding Home IoT Environments with Personalised Real-time Risk Control - aims to deploy a highly effective security framework for IoT smart home residents through a novel reference architecture for user-centric cyber security in smart homes providing an unobtrusive and user-comprehensible solution. The aforementioned security framework leads to a transparent cyber security environment by increasing the effectiveness of the existing cyber security services and enhancing system's self-defence through disruptive software-enabled network security solutions. In this paper, GHOST security framework for IoT-based smart homes is presented. It is aiming to address the security challenges posed by several types of attacks, such as network, device and software. The effective design of the overall multi-layered architecture is analysed, with particular emphasis given to the integration aspects through dynamic and re-configurable solutions and the features provided by each one of the architectural layers. Additionally, real-life trials and the associated use cases are described showcasing the competences and potential of the proposed framework.
2020-04-24
Vazquez Sandoval, Itzel, Lenzini, Gabriele.  2018.  Experience Report: How to Extract Security Protocols' Specifications from C Libraries. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). 02:719—724.

Often, analysts have to face a challenging situation when formally verifying the implementation of a security protocol: they need to build a model of the protocol from only poorly or not documented code, and with little or no help from the developers to better understand it. Security protocols implementations frequently use services provided by libraries coded in the C programming language; automatic tools for codelevel reverse engineering offer good support to comprehend the behavior of code in object-oriented languages but are ineffective to deal with libraries in C. Here we propose a systematic, yet human-dependent approach, which combines the capabilities of state-of-the-art tools in order to help the analyst to retrieve, step by step, the security protocol specifications from a library in C. Those specifications can then be used to create the formal model needed to carry out the analysis.

2020-04-13
Vladimirovich, Menshikh Valerii, Iurevich, Kalkov Dmitrii, Evgenevna, Spiridonova Natalia.  2019.  Model of optimization of arrangement of video surveillance means with regard to ensuring their own security. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). :4–7.
Currently, video surveillance systems play an important role in ensuring the safety of citizens, their property, etc., which greatly contributes to the reduction of crime. Due to the high intrinsic value and/or high efficiency of their use for the prevention and detection of crimes, they themselves often become the objects of illegal actions (theft, damage). The main purpose of video surveillance systems is to provide continuous visual monitoring of the situation at a particular facility or territory, as well as event registration. The breakdown of the camera is detected by the loss of signal in the control center. However, the absence of a signal for reasons other than these can also be caused by an accident on the power line, a communication channel break, software or hardware breakdown of the camera itself. In this regard, there is a problem of determining the exact cause of the lack of signal and, consequently, the need for a rapid response to it. The paper proposes an approach of video surveillance arrangement according to their main functional purpose, as well as their ability to monitor each other. Based on this approach, a mathematical model of the choice of locations and conditions of location of video surveillance equipment from a set of potentially acceptable as a problem of nonlinear Boolean programming is developed. This model maximizes the functionality of the video surveillance system, taking into account the importance of areas and objects of surveillance with restrictions on the number of video surveillance of each type, the nature of the terrain and existing buildings. An algorithm for solving this problem is proposed.
Verma, Dinesh, Bertino, Elisa, de Mel, Geeth, Melrose, John.  2019.  On the Impact of Generative Policies on Security Metrics. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :104–109.
Policy based Security Management in an accepted practice in the industry, and required to simplify the administrative overhead associated with security management in complex systems. However, the growing dynamicity, complexity and scale of modern systems makes it difficult to write the security policies manually. Using AI, we can generate policies automatically. Security policies generated automatically can reduce the manual burden introduced in defining policies, but their impact on the overall security of a system is unclear. In this paper, we discuss the security metrics that can be associated with a system using generative policies, and provide a simple model to determine the conditions under which generating security policies will be beneficial to improve the security of the system. We also show that for some types of security metrics, a system using generative policies can be considered as equivalent to a system using manually defined policies, and the security metrics of the generative policy based system can be mapped to the security metrics of the manual system and vice-versa.
Morishita, Shun, Hoizumi, Takuya, Ueno, Wataru, Tanabe, Rui, Gañán, Carlos, van Eeten, Michel J.G., Yoshioka, Katsunari, Matsumoto, Tsutomu.  2019.  Detect Me If You… Oh Wait. An Internet-Wide View of Self-Revealing Honeypots. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :134–143.
Open-source honeypots are a vital component in the protection of networks and the observation of trends in the threat landscape. Their open nature also enables adversaries to identify the characteristics of these honeypots in order to detect and avoid them. In this study, we investigate the prevalence of 14 open- source honeypots running more or less default configurations, making them easily detectable by attackers. We deploy 20 simple signatures and test them for false positives against servers for domains in the Alexa top 10,000, official FTP mirrors, mail servers in real operation, and real IoT devices running telnet. We find no matches, suggesting good accuracy. We then measure the Internet-wide prevalence of default open-source honeypots by matching the signatures with Censys scan data and our own scans. We discovered 19,208 honeypots across 637 Autonomous Systems that are trivially easy to identify. Concentrations are found in research networks, but also in enterprise, cloud and hosting networks. While some of these honeypots probably have no operational relevance, e.g., they are student projects, this explanation does not fit the wider population. One cluster of honeypots was confirmed to belong to a well-known security center and was in use for ongoing attack monitoring. Concentrations in an another cluster appear to be the result of government incentives. We contacted 11 honeypot operators and received response from 4 operators, suggesting the problem of lack of network hygiene. Finally, we find that some honeypots are actively abused by attackers for hosting malicious binaries. We notified the owners of the detected honeypots via their network operators and provided recommendations for customization to avoid simple signature-based detection. We also shared our results with the honeypot developers.
2020-04-03
Nandi, Giann Spilere, Pereira, David, Vigil, Martín, Moraes, Ricardo, Morales, Analúcia Schiaffino, Araújo, Gustavo.  2019.  Security in Wireless Sensor Networks: A formal verification of protocols. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:425—431.

The increase of the digitalization taking place in various industrial domains is leading developers towards the design and implementation of more and more complex networked control systems (NCS) supported by Wireless Sensor Networks (WSN). This naturally raises new challenges for the current WSN technology, namely in what concerns improved guarantees of technical aspects such as real-time communications together with safe and secure transmissions. Notably, in what concerns security aspects, several cryptographic protocols have been proposed. Since the design of these protocols is usually error-prone, security breaches can still be exposed and MALICIOUSly exploited unless they are rigorously analyzed and verified. In this paper we formally verify, using ProVerif, three cryptographic protocols used in WSN, regarding the security properties of secrecy and authenticity. The security analysis performed in this paper is more robust than the ones performed in related work. Our contributions involve analyzing protocols that were modeled considering an unbounded number of participants and actions, and also the use of a hierarchical system to classify the authenticity results. Our verification shows that the three analyzed protocols guarantee secrecy, but can only provide authenticity in specific scenarios.

Werner, Jorge, Westphall, Carla Merkle, Vargas, André Azevedo, Westphall, Carlos Becker.  2019.  Privacy Policies Model in Access Control. 2019 IEEE International Systems Conference (SysCon). :1—8.
With the increasing advancement of services on the Internet, due to the strengthening of cloud computing, the exchange of data between providers and users is intense. Management of access control and applications need data to identify users and/or perform services in an automated and more practical way. Applications have to protect access to data collected. However, users often provide data in cloud environments and do not know what was collected, how or by whom data will be used. Privacy of personal data has been a challenge for information security. This paper presents the development and use of a privacy policy strategy, i. e., it was proposed a privacy policy model and format to be integrated with the authorization task. An access control language and the preferences defined by the owner of information were used to implement the proposals. The results showed that the strategy is feasible, guaranteeing to the users the right over their data.
2020-03-31
Reyes, Irwin, Wijesekera, Primal, Reardon, Joel, Elazari, Amit, Razaghpanah, Abbas, Vallina-Rodriguez, Narseo, Egelman, Serge.  2018.  “Won’t Somebody Think of the Children?” Examining COPPA Compliance at Scale Proceedings on Privacy Enhancing Technologies. 2018:63-83.

We present a scalable dynamic analysis framework that allows for the automatic evaluation of the privacy behaviors of Android apps. We use our system to analyze mobile apps’ compliance with the Children’s Online Privacy Protection Act (COPPA), one of the few stringent privacy laws in the U.S. Based on our automated analysis of 5,855 of the most popular free children’s apps, we found that a majority are potentially in violation of COPPA, mainly due to their use of thirdparty SDKs. While many of these SDKs offer configuration options to respect COPPA by disabling tracking and behavioral advertising, our data suggest that a majority of apps either do not make use of these options or incorrectly propagate them across mediation SDKs. Worse, we observed that 19% of children’s apps collect identifiers or other personally identifiable information (PII) via SDKs whose terms of service outright prohibit their use in child-directed apps. Finally, we show that efforts by Google to limit tracking through the use of a resettable advertising ID have had little success: of the 3,454 apps that share the resettable ID with advertisers, 66% transmit other, non-resettable, persistent identifiers as well, negating any intended privacy-preserving properties of the advertising ID.

2020-03-30
Vasiliu, Yevhen, Limar, Igor, Gancarczyk, Tomasz, Karpinski, Mikolaj.  2019.  New Quantum Secret Sharing Protocol Using Entangled Qutrits. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:324–329.
A new quantum secret sharing protocol based on the ping-pong protocol of quantum secure direct communication is proposed. The pairs of entangled qutrits are used in protocol, which allows an increase in the information capacity compared with protocols based on entangled qubits. The detection of channel eavesdropping used in the protocol is being implemented in random moments of time, thereby it is possible do not use the significant amount of quantum memory. The security of the proposed protocol to attacks is considered. A method for additional amplification of the security to an eavesdropping attack in communication channels for the developed protocol is proposed.
Hu, Zhengbing, Vasiliu, Yevhen, Smirnov, Oleksii, Sydorenko, Viktoriia, Polishchuk, Yuliia.  2019.  Abstract Model of Eavesdropper and Overview on Attacks in Quantum Cryptography Systems. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:399–405.
In today's world, it's almost impossible to find a sphere of human life in which information technologies would not be used. On the one hand, it simplifies human life - virtually everyone carries a mini-computer in his pocket and it allows to perform many operations, that took a lot of time, in minutes. In addition, IT has simplified and promptly developed areas such as medicine, banking, document circulation, military, and many other infrastructures of the state. Nevertheless, even today, privacy remains a major problem in many information transactions. One of the most important directions for ensuring the information confidentiality in open communication networks has been and remains its protection by cryptographic methods. Although it is known that traditional cryptography methods give reasons to doubt in their reliability, quantum cryptography has proven itself as a more reliable information security technology. As far is it quite new direction there is no sufficiently complete classification of attacks on quantum cryptography methods, in view of this new extended classification of attacks on quantum protocols and quantum cryptosystems is proposed in this work. Classification takes into account the newest attacks (which use devices loopholes) on quantum key distribution equipment. These attacks have been named \textbackslashtextless; \textbackslashtextless; quantum hacking\textbackslashtextgreater\textbackslashtextgreater. Such classification may be useful for choosing commercially available quantum key distribution system. Also abstract model of eavesdropper in quantum systems was created and it allows to determine a set of various nature measures that need to be further implemented to provide reliable security with the help of specific quantum systems.
Verma, Rajat Singh, Chandavarkar, B. R., Nazareth, Pradeep.  2019.  Mitigation of hard-coded credentials related attacks using QR code and secured web service for IoT. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Hard-coded credentials such as clear text log-in id and password provided by the IoT manufacturers and unsecured ways of remotely accessing IoT devices are the major security concerns of industry and academia. Limited memory, power, and processing capabilities of IoT devices further worsen the situations in improving the security of IoT devices. In such scenarios, a lightweight security algorithm up to some extent can minimize the risk. This paper proposes one such approach using Quick Response (QR) code to mitigate hard-coded credentials related attacks such as Mirai malware, wreak havoc, etc. The QR code based approach provides non-clear text unpredictable login id and password. Further, this paper also proposes a secured way of remotely accessing IoT devices through modified https. The proposed algorithms are implemented and verified using Raspberry Pi 3 model B.
Souza, Renan, Azevedo, Leonardo, Lourenço, Vítor, Soares, Elton, Thiago, Raphael, Brandão, Rafael, Civitarese, Daniel, Brazil, Emilio, Moreno, Marcio, Valduriez, Patrick et al..  2019.  Provenance Data in the Machine Learning Lifecycle in Computational Science and Engineering. 2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS). :1–10.
Machine Learning (ML) has become essential in several industries. In Computational Science and Engineering (CSE), the complexity of the ML lifecycle comes from the large variety of data, scientists' expertise, tools, and workflows. If data are not tracked properly during the lifecycle, it becomes unfeasible to recreate a ML model from scratch or to explain to stackholders how it was created. The main limitation of provenance tracking solutions is that they cannot cope with provenance capture and integration of domain and ML data processed in the multiple workflows in the lifecycle, while keeping the provenance capture overhead low. To handle this problem, in this paper we contribute with a detailed characterization of provenance data in the ML lifecycle in CSE; a new provenance data representation, called PROV-ML, built on top of W3C PROV and ML Schema; and extensions to a system that tracks provenance from multiple workflows to address the characteristics of ML and CSE, and to allow for provenance queries with a standard vocabulary. We show a practical use in a real case in the O&G industry, along with its evaluation using 239,616 CUDA cores in parallel.
2020-03-23
Tejendra, D.S., Varunkumar, C.R., Sriram, S.L., Sumathy, V., Thejeshwari, C.K..  2019.  A Novel Approach to reduce Vulnerability on Router by Zero vulnerability Encrypted password in Router (ZERO) Mechanism. 2019 3rd International Conference on Computing and Communications Technologies (ICCCT). :163–167.
As technology is developing exponentially and the world is moving towards automation, the resources have to be transferred through the internet which requires routers to connect networks and forward bundles (information). Due to the vulnerability of routers the data and resources have been hacked. The vulnerability of routers is due to minimum authentication to the network shared, some technical attacks on routers, leaking of passwords to others, single passwords. Based on the study, the solution is to maximize authentication of the router by embedding an application that monitors the user entry based on MAC address of the device, the password is frequently changed and that encrypted password is sent to a user and notifies the admin about the changes. Thus, these routers provide high-level security to the forward data through the internet.
2020-03-18
Padmashree, M G, Khanum, Shahela, Arunalatha, J S, Venugopal, K R.  2019.  SIRLC: Secure Information Retrieval using Lightweight Cryptography in HIoT. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :269–273.

Advances in new Communication and Information innovations has led to a new paradigm known as Internet of Things (IoT). Healthcare environment uses IoT technologies for Patients care which can be used in various medical applications. Patient information is encrypted consistently to maintain the access of therapeutic records by authoritative entities. Healthcare Internet of Things (HIoT) facilitate the access of Patient files immediately in emergency situations. In the proposed system, the Patient directly provides the Key to the Doctor in normal care access. In Emergency care, a Patient shares an Attribute based Key with a set of Emergency Supporting Representatives (ESRs) and access permission to the Doctor for utilizing Emergency key from ESR. The Doctor decrypts the medical records by using Attribute based key and Emergency key to save the Patient's life. The proposed model Secure Information Retrieval using Lightweight Cryptography (SIRLC) reduces the secret key generation time and cipher text size. The performance evaluation indicates that SIRLC is a better option to utilize in Healthcare IoT than Lightweight Break-glass Access Control(LiBAC) with enhanced security and reduced computational complexity.

Karmakar, Kallol Krishna, Varadharajan, Vijay, Nepal, Surya, Tupakula, Uday.  2019.  SDN Enabled Secure IoT Architecture. {2019 IFIP/IEEE} Symposium on Integrated Network and Service Management (IM).

The Internet of Things (IoT) is increasingly being used in applications ranging from precision agriculture to critical national infrastructure by deploying a large number of resource-constrained devices in hostile environments. These devices are being exploited to launch attacks in cyber systems. As a result, security has become a significant concern in the design of IoT based applications. In this paper, we present a security architecture for IoT networks by leveraging the underlying features supported by Software Defined Networks (SDN). Our security architecture restricts network access to authenticated IoT devices. We use fine granular policies to secure the flows in the IoT network infrastructure and provide a lightweight protocol to authenticate IoT devices. Such an integrated security approach involving authentication of IoT devices and enabling authorized flows can help to protect IoT networks from malicious IoT devices and attacks.