Visible to the public Biblio

Found 1032 results

Filters: First Letter Of Last Name is V  [Clear All Filters]
2018-09-05
Chen, Yizheng, Nadji, Yacin, Kountouras, Athanasios, Monrose, Fabian, Perdisci, Roberto, Antonakakis, Manos, Vasiloglou, Nikolaos.  2017.  Practical Attacks Against Graph-based Clustering. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1125–1142.
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.
Kučera, Martin, Tsankov, Petar, Gehr, Timon, Guarnieri, Marco, Vechev, Martin.  2017.  Synthesis of Probabilistic Privacy Enforcement. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :391–408.

Existing probabilistic privacy enforcement approaches permit the execution of a program that processes sensitive data only if the information it leaks is within the bounds specified by a given policy. Thus, to extract any information, users must manually design a program that satisfies the policy. In this work, we present a novel synthesis approach that automatically transforms a program into one that complies with a given policy. Our approach consists of two ingredients. First, we phrase the problem of determining the amount of leaked information as Bayesian inference, which enables us to leverage existing probabilistic programming engines. Second, we present two synthesis procedures that add uncertainty to the program's outputs as a way of reducing the amount of leaked information: an optimal one based on SMT solving and a greedy one with quadratic running time. We implemented and evaluated our approach on 10 representative programs from multiple application domains. We show that our system can successfully synthesize a permissive enforcement mechanism for all examples.

2018-08-23
Vora, Keval, Tian, Chen, Gupta, Rajiv, Hu, Ziang.  2017.  CoRAL: Confined Recovery in Distributed Asynchronous Graph Processing. Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems. :223–236.
Existing distributed asynchronous graph processing systems employ checkpointing to capture globally consistent snapshots and rollback all machines to most recent checkpoint to recover from machine failures. In this paper we argue that recovery in distributed asynchronous graph processing does not require the entire execution state to be rolled back to a globally consistent state due to the relaxed asynchronous execution semantics. We define the properties required in the recovered state for it to be usable for correct asynchronous processing and develop CoRAL, a lightweight checkpointing and recovery algorithm. First, this algorithm carries out confined recovery that only rolls back graph execution states of the failed machines to affect recovery. Second, it relies upon lightweight checkpoints that capture locally consistent snapshots with a reduced peak network bandwidth requirement. Our experiments using real-world graphs show that our technique recovers from failures and finishes processing 1.5x to 3.2x faster compared to the traditional asynchronous checkpointing and recovery mechanism when failures impact 1 to 6 machines of a 16 machine cluster. Moreover, capturing locally consistent snapshots significantly reduces intermittent high peak bandwidth usage required to save the snapshots – the average reduction in 99th percentile bandwidth ranges from 22% to 51% while 1 to 6 snapshot replicas are being maintained.
Vassena, M., Breitner, J., Russo, A..  2017.  Securing Concurrent Lazy Programs Against Information Leakage. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :37–52.
Many state-of-the-art information-flow control (IFC) tools are implemented as Haskell libraries. A distinctive feature of this language is lazy evaluation. In his influencal paper on why functional programming matters, John Hughes proclaims:,,Lazy evaluation is perhaps the most powerful tool for modularization in the functional programmer's repertoire.,,Unfortunately, lazy evaluation makes IFC libraries vulnerable to leaks via the internal timing covert channel. The problem arises due to sharing, the distinguishing feature of lazy evaluation, which ensures that results of evaluated terms are stored for subsequent re-utilization. In this sense, the evaluation of a term in a high context represents a side-effect that eludes the security mechanisms of the libraries. A naïve approach to prevent that consists in forcing the evaluation of terms before entering a high context. However, this is not always possible in lazy languages, where terms often denote infinite data structures. Instead, we propose a new language primitive, lazyDup, which duplicates terms lazily. By using lazyDup to duplicate terms manipulated in high contexts, we make the security library MAC robust against internal timing leaks via lazy evaluation. We show that well-typed programs satisfy progress-sensitive non-interference in our lazy calculus with non-strict references. Our security guarantees are supported by mechanized proofs in the Agda proof assistant.
Laszka, Aron, Abbas, Waseem, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2017.  Synergic Security for Smart Water Networks: Redundancy, Diversity, and Hardening. Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks. :21–24.

Smart water networks can provide great benefits to our society in terms of efficiency and sustainability. However, smart capabilities and connectivity also expose these systems to a wide range of cyber attacks, which enable cyber-terrorists and hostile nation states to mount cyber-physical attacks. Cyber-physical attacks against critical infrastructure, such as water treatment and distribution systems, pose a serious threat to public safety and health. Consequently, it is imperative that we improve the resilience of smart water networks. We consider three approaches for improving resilience: redundancy, diversity, and hardening. Even though each one of these "canonical" approaches has been throughly studied in prior work, a unified theory on how to combine them in the most efficient way has not yet been established. In this paper, we address this problem by studying the synergy of these approaches in the context of protecting smart water networks from cyber-physical contamination attacks.

Abbas, W., Laszka, A., Vorobeychik, Y., Koutsoukos, X..  2017.  Improving network connectivity using trusted nodes and edges. 2017 American Control Conference (ACC). :328–333.

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.

Dong, Changyu, Wang, Yilei, Aldweesh, Amjad, McCorry, Patrick, van Moorsel, Aad.  2017.  Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for Verifiable Cloud Computing. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :211–227.
Cloud computing has become an irreversible trend. Together comes the pressing need for verifiability, to assure the client the correctness of computation outsourced to the cloud. Existing verifiable computation techniques all have a high overhead, thus if being deployed in the clouds, would render cloud computing more expensive than the on-premises counterpart. To achieve verifiability at a reasonable cost, we leverage game theory and propose a smart contract based solution. In a nutshell, a client lets two clouds compute the same task, and uses smart contracts to stimulate tension, betrayal and distrust between the clouds, so that rational clouds will not collude and cheat. In the absence of collusion, verification of correctness can be done easily by crosschecking the results from the two clouds. We provide a formal analysis of the games induced by the contracts, and prove that the contracts will be effective under certain reasonable assumptions. By resorting to game theory and smart contracts, we are able to avoid heavy cryptographic protocols. The client only needs to pay two clouds to compute in the clear, and a small transaction fee to use the smart contracts. We also conducted a feasibility study that involves implementing the contracts in Solidity and running them on the official Ethereum network.
Prakash, Y. W., Biradar, V., Vincent, S., Martin, M., Jadhav, A..  2017.  Smart bluetooth low energy security system. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2141–2146.

The need for security in today's world has become a mandatory issue to look after. With the increase in a number of thefts, it has become a necessity to implement a smart security system. Due to the high cost of the existing smart security systems which use conventional Bluetooth and other wireless technologies and their relatively high energy consumption, implementing a security system with low energy consumption at a low cost has become the need of the hour. The objective of the paper is to build a cost effective and low energy consumption security system using the Bluetooth Low Energy (BLE) technology. This system will help the user to monitor and manage the security of the house even when the user is outside the house with the help of webpage. This paper presents the design and implementation of a security system using PSoC 4 BLE which can automatically lock and unlock the door when the user in the vicinity and leaving the vicinity of the door respectively by establishing a wireless connection between the physical lock and the smartphone. The system also captures an image of a person arriving at the house and transmits it wirelessly to a webpage. The system also notifies the user of any intrusion by sending a message and the image of the intruder to the webpage. The user can also access the door remotely on the go from the website.

2018-07-18
Tupsamudre, Harshal, Banahatti, Vijayanand, Lodha, Sachin, Vyas, Ketan.  2017.  Pass-O: A Proposal to Improve the Security of Pattern Unlock Scheme. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :400–407.

The graphical pattern unlock scheme which requires users to connect a minimum of 4 nodes on 3X3 grid is one of the most popular authentication mechanism on mobile devices. However prior research suggests that users' pattern choices are highly biased and hence vulnerable to guessing attacks. Moreover, 3X3 pattern choices are devoid of features such as longer stroke lengths, direction changes and intersections that are considered to be important in preventing shoulder-surfing attacks. We attribute these insecure practices to the geometry of the grid and its complicated drawing rules which prevent users from realising the full potential of graphical passwords. In this paper, we propose and explore an alternate circular layout referred to as Pass-O which unlike grid layout allows connection between any two nodes, thus simplifying the pattern drawing rules. Consequently, Pass-O produces a theoretical search space of 9,85,824, almost 2.5 times greater than 3X3 grid layout. We compare the security of 3X3 and Pass-O patterns theoretically as well as empirically. Theoretically, Pass-O patterns are uniform and have greater visual complexity due to large number of intersections. To perform empirical analysis, we conduct a large-scale web-based user study and collect more than 1,23,000 patterns from 21,053 users. After examining user-chosen 3X3 and Pass-O patterns across different metrics such as pattern length, stroke length, start point, end point, repetitions, number of direction changes and intersections, we find that Pass-O patterns are much more secure than 3X3 patterns.

Vávra, J., Hromada, M..  2017.  Anomaly Detection System Based on Classifier Fusion in ICS Environment. 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT). :32–38.

The detection of cyber-attacks has become a crucial task for highly sophisticated systems like industrial control systems (ICS). These systems are an essential part of critical information infrastructure. Therefore, we can highlight their vital role in contemporary society. The effective and reliable ICS cyber defense is a significant challenge for the cyber security community. Thus, intrusion detection is one of the demanding tasks for the cyber security researchers. In this article, we examine classification problem. The proposed detection system is based on supervised anomaly detection techniques. Moreover, we utilized classifiers algorithms in order to increase intrusion detection capabilities. The fusion of the classifiers is the way how to achieve the predefined goal.

Düllmann, Thomas F., van Hoorn, André.  2017.  Model-driven Generation of Microservice Architectures for Benchmarking Performance and Resilience Engineering Approaches. Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion. :171–172.

Microservice architectures are steadily gaining adoption in industrial practice. At the same time, performance and resilience are important properties that need to be ensured. Even though approaches for performance and resilience have been developed (e.g., for anomaly detection and fault tolerance), there are no benchmarking environments for their evaluation under controlled conditions. In this paper, we propose a generative platform for benchmarking performance and resilience engineering approaches in microservice architectures, comprising an underlying metamodel, a generation platform, and supporting services for workload generation, problem injection, and monitoring.

2018-07-06
Liu, Chang, Li, Bo, Vorobeychik, Yevgeniy, Oprea, Alina.  2017.  Robust Linear Regression Against Training Data Poisoning. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :91–102.
The effectiveness of supervised learning techniques has made them ubiquitous in research and practice. In high-dimensional settings, supervised learning commonly relies on dimensionality reduction to improve performance and identify the most important factors in predicting outcomes. However, the economic importance of learning has made it a natural target for adversarial manipulation of training data, which we term poisoning attacks. Prior approaches to dealing with robust supervised learning rely on strong assumptions about the nature of the feature matrix, such as feature independence and sub-Gaussian noise with low variance. We propose an integrated method for robust regression that relaxes these assumptions, assuming only that the feature matrix can be well approximated by a low-rank matrix. Our techniques integrate improved robust low-rank matrix approximation and robust principle component regression, and yield strong performance guarantees. Moreover, we experimentally show that our methods significantly outperform state of the art both in running time and prediction error.
2018-06-20
Aslanyan, H., Avetisyan, A., Arutunian, M., Keropyan, G., Kurmangaleev, S., Vardanyan, V..  2017.  Scalable Framework for Accurate Binary Code Comparison. 2017 Ivannikov ISPRAS Open Conference (ISPRAS). :34–38.
Comparison of two binary files has many practical applications: the ability to detect programmatic changes between two versions, the ability to find old versions of statically linked libraries to prevent the use of well-known bugs, malware analysis, etc. In this article, a framework for comparison of binary files is presented. Framework uses IdaPro [1] disassembler and Binnavi [2] platform to recover structure of the target program and represent it as a call graph (CG). A program dependence graph (PDG) corresponds to each vertex of the CG. The proposed comparison algorithm consists of two main stages. At the first stage, several heuristics are applied to find the exact matches. Two functions are matched if at least one of the calculated heuristics is the same and unique in both binaries. At the second stage, backward and forward slicing is applied on matched vertices of CG to find further matches. According to empiric results heuristic method is effective and has high matching quality for unchanged or slightly modified functions. As a contradiction, to match heavily modified functions, binary code clone detection is used and it is based on finding maximum common subgraph for pair of PDGs. To achieve high performance on extensive binaries, the whole matching process is parallelized. The framework is tested on the number of real world libraries, such as python, openssh, openssl, libxml2, rsync, php, etc. Results show that in most cases more than 95% functions are truly matched. The tool is scalable due to parallelization of functions matching process and generation of PDGs and CGs.
Searles, R., Xu, L., Killian, W., Vanderbruggen, T., Forren, T., Howe, J., Pearson, Z., Shannon, C., Simmons, J., Cavazos, J..  2017.  Parallelization of Machine Learning Applied to Call Graphs of Binaries for Malware Detection. 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). :69–77.

Malicious applications have become increasingly numerous. This demands adaptive, learning-based techniques for constructing malware detection engines, instead of the traditional manual-based strategies. Prior work in learning-based malware detection engines primarily focuses on dynamic trace analysis and byte-level n-grams. Our approach in this paper differs in that we use compiler intermediate representations, i.e., the callgraph representation of binaries. Using graph-based program representations for learning provides structure of the program, which can be used to learn more advanced patterns. We use the Shortest Path Graph Kernel (SPGK) to identify similarities between call graphs extracted from binaries. The output similarity matrix is fed into a Support Vector Machine (SVM) algorithm to construct highly-accurate models to predict whether a binary is malicious or not. However, SPGK is computationally expensive due to the size of the input graphs. Therefore, we evaluate different parallelization methods for CPUs and GPUs to speed up this kernel, allowing us to continuously construct up-to-date models in a timely manner. Our hybrid implementation, which leverages both CPU and GPU, yields the best performance, achieving up to a 14.2x improvement over our already optimized OpenMP version. We compared our generated graph-based models to previously state-of-the-art feature vector 2-gram and 3-gram models on a dataset consisting of over 22,000 binaries. We show that our classification accuracy using graphs is over 19% higher than either n-gram model and gives a false positive rate (FPR) of less than 0.1%. We are also able to consider large call graphs and dataset sizes because of the reduced execution time of our parallelized SPGK implementation.

Tran, H., Nguyen, A., Vo, P., Vu, T..  2017.  DNS graph mining for malicious domain detection. 2017 IEEE International Conference on Big Data (Big Data). :4680–4685.

As a vital component of variety cyber attacks, malicious domain detection becomes a hot topic for cyber security. Several recent techniques are proposed to identify malicious domains through analysis of DNS data because much of global information in DNS data which cannot be affected by the attackers. The attackers always recycle resources, so they frequently change the domain - IP resolutions and create new domains to avoid detection. Therefore, multiple malicious domains are hosted by the same IPs and multiple IPs also host same malicious domains in simultaneously, which create intrinsic association among them. Hence, using the labeled domains which can be traced back from queries history of all domains to verify and figure out the association of them all. Graphs seem the best candidate to represent for this relationship and there are many algorithms developed on graph with high performance. A graph-based interface can be developed and transformed to the graph mining task of inferring graph node's reputation scores using improvements of the belief propagation algorithm. Then higher reputation scores the nodes reveal, the more malicious probabilities they infer. For demonstration, this paper proposes a malicious domain detection technique and evaluates on a real-world dataset. The dataset is collected from DNS data servers which will be used for building a DNS graph. The proposed technique achieves high performance in accuracy rates over 98.3%, precision and recall rates as: 99.1%, 98.6%. Especially, with a small set of labeled domains (legitimate and malicious domains), the technique can discover a large set of potential malicious domains. The results indicate that the method is strongly effective in detecting malicious domains.

Verma, R., Sharma, R., Singh, U..  2017.  New approach through detection and prevention of wormhole attack in MANET. 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). 2:526–531.

A Local Area Network (LAN) consists of wireless mobile nodes that can communicate with each other through electromagnetic radio waves. Mobile Ad hoc Network (MANET) consists of mobile nodes, the network is infrastructure less. It dynamically self organizes in arbitrary and temporary network topologies. Security is extremely vital for MANET. Attacks pave way for security. Among all the potential attacks on MANET, detection of wormhole attack is very difficult.One malicious node receives packets from a particular location, tunnels them to a different contagious nodes situated in another location of the network and distorts the full routing method. All routes are converged to the wormhole established by the attackers. The complete routing system in MANET gets redirected. Many existing ways have been surveyed to notice wormhole attack in MANET. Our proposed methodology is a unique wormhole detection and prevention algorithm that shall effectively notice the wormhole attack in theMANET. Our notion is to extend the detection as well as the quantitative relation relative to the existing ways.

Kumar, N. C., Basit, A., Singh, P., Venkaiah, V. C..  2017.  Proactive secret sharing for long lived MANETs using Elliptic Curve Cryptography. 2017 International Conference on Inventive Computing and Informatics (ICICI). :312–316.

Since MANETs are infrastructure-less, they heavily use secret sharing techniques to distribute and decentralize the role of a trusted third party, where the MANET secret s is shared among the legitimate nodes using (t, n) threshold secret sharing scheme. For long lived MANETs, the shared secret is periodically updated without changing the MANET secret based on proactive secret sharing using Elliptic Curve Cryptography(ECC). Hence, the adversary trying to learn the secret, needs to gain at-least t partial shares in the same time period. If the time period and the threshold value t are selected properly, proactive verifiable secret sharing can maintain the overall security of the information in long lived MANETs. The conventional cryptographic algorithms are heavy weight, require lot of computation power thus consuming lot of resources. In our proposal we used Elliptic Curve Cryptography to verify commitments as it requires smaller keys compared to existing proactive secret sharing techniques and makes it useful for MANETs, Which are formed of resource constraint devices.

Holterbach, Thomas, Aben, Emile, Pelsser, Cristel, Bush, Randy, Vanbever, Laurent.  2017.  Measurement Vantage Point Selection Using A Similarity Metric. Proceedings of the Applied Networking Research Workshop. :1–3.

It is a challenge to select the most appropriate vantage points in a measurement platform with a wide selection. RIPE Atlas [2], for example currently has over 9600 active measurement vantage points, with selections based on AS, country, etc. A user is limited to how many vantage points they can use in a measurement. This is not only due to limitations the measurement platform imposes, but data from a large number of vantage points would produce a large volume to analyse and store. So it makes sense to optimize for a minimal set of vantage points with a maximum chance of observing the phenomenon in which the user is interested. Network operators often need to debug with only limited information about the problem ("Our network is slow for users in France!"). doing a minimal set of measurements that would allow testing through a wide diversity of networks could be a valuable add-on to the tools available to network operators. Given platforms with numerous vantage points, we have the luxury of testing a large set of end-customer outgoing paths. A diversity metric would allow selection of the most dissimilar vantage points, while exploring from as diverse angles as possible, even with a limited probing budget. If one finds an interesting network phenomenon, one could use the similarity metric to advantage by selecting the most similar vantage points to the one exhibiting the phenomenon, to validate the phenomenon from multiple vantage points. We propose a novel means of selecting vantage points, not based on categorical properties such as origin AS, or geographic location, but rather on topological (dis)similarity between vantage points. We describe a similarity metric across RIPE Atlas probes, and show how it performs better for the purpose of topology discovery than the default probe selection mechanism built into RIPE Atlas.

Dmitriev, Pavel, Gupta, Somit, Kim, Dong Woo, Vaz, Garnet.  2017.  A Dirty Dozen: Twelve Common Metric Interpretation Pitfalls in Online Controlled Experiments. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1427–1436.

Online controlled experiments (e.g., A/B tests) are now regularly used to guide product development and accelerate innovation in software. Product ideas are evaluated as scientific hypotheses, and tested in web sites, mobile applications, desktop applications, services, and operating systems. One of the key challenges for organizations that run controlled experiments is to come up with the right set of metrics [1] [2] [3]. Having good metrics, however, is not enough. In our experience of running thousands of experiments with many teams across Microsoft, we observed again and again how incorrect interpretations of metric movements may lead to wrong conclusions about the experiment's outcome, which if deployed could hurt the business by millions of dollars. Inspired by Steven Goodman's twelve p-value misconceptions [4], in this paper, we share twelve common metric interpretation pitfalls which we observed repeatedly in our experiments. We illustrate each pitfall with a puzzling example from a real experiment, and describe processes, metric design principles, and guidelines that can be used to detect and avoid the pitfall. With this paper, we aim to increase the experimenters' awareness of metric interpretation issues, leading to improved quality and trustworthiness of experiment results and better data-driven decisions.

2018-06-11
Rafique, Ansar, Van Landuyt, Dimitri, Reniers, Vincent, Joosen, Wouter.  2017.  Towards Scalable and Dynamic Data Encryption for Multi-tenant SaaS. Proceedings of the Symposium on Applied Computing. :411–416.
Application-level data management middleware solutions are becoming increasingly compelling to deal with the complexity of a multi-cloud or federated cloud storage and multitenant storage architecture. However, these systems typically support traditional data mapping strategies that are created under the assumption of a fixed and rigorous database schema, and mapping data objects while supporting varying data confidentiality requirements therefore leads to fragmentation of data over distributed storage nodes. This introduces performance over-head at the level of individual database transactions and negatively affects the overall scalability. This paper discusses these challenges and highlights the potential of leveraging the data schema flexibility of NoSQL databases to accomplish dynamic and fine-grained data encryption in a more efficient and scalable manner. We illustrate these ideas in the context of an industrial multi-tenant SaaS application.
Van hamme, Tim, Preuveneers, Davy, Joosen, Wouter.  2017.  A Dynamic Decision Fusion Middleware for Trustworthy Context-aware IoT Applications. Proceedings of the 4th Workshop on Middleware and Applications for the Internet of Things. :1–6.

Internet of Things (IoT) devices offer new sources of contextual information, which can be leveraged by applications to make smart decisions. However, due to the decentralized and heterogeneous nature of such devices - each only having a partial view of their surroundings - there is an inherent risk of uncertain, unreliable and inconsistent observations. This is a serious concern for applications making security related decisions, such as context-aware authentication. We propose and evaluate a middleware for IoT that provides trustworthy context for a collaborative authentication use case. It abstracts a dynamic and distributed fusion scheme that extends the Chair-Varshney (CV) optimal decision fusion rule such that it can be used in a highly dynamic IoT environment. We compare performance and cost trade-offs against regular CV. Experimental evaluation demonstrates that our solution outperforms CV with 10% in a highly dynamic IoT environments, with the ability to detect and mitigate unreliable sensors.

van Rijswijk-Deij, R., Chung, T., Choffnes, D., Mislove, A., Toorop, W..  2017.  The Root Canary: Monitoring and Measuring the DNSSEC Root Key Rollover. Proceedings of the SIGCOMM Posters and Demos. :63–64.

The Domain Name System (DNS) is part of the core of the Internet. Over the past decade, much-needed security features were added to this protocol, with the introduction of the DNS Security Extensions. DNSSEC adds authenticity and integrity to the protocol using digital signatures, and turns the DNS into a public key infrastructure (PKI). At the top of this PKI is a single key, the so-called Key Signing Key (KSK) for the DNS root. The current Root KSK was introduced in 2010, and has not changed since. This year, the Root KSK will be replaced for the first time ever. This event potentially has a major impact on the Internet. Thousands of DNS resolvers worldwide rely on this key to validate DNSSEC signatures, and must start using the new key, either through an automated process, or manual intervention. Failure to pick up the new key will result in resolvers becoming completely unavailable to end users. This work presents the "Root Canary", a system to monitor and measure this event from the perspective of validating DNS resolvers for its entire nine-month duration. The system combines three active measurement platforms to have the broadest possible coverage of validating resolvers. Results will be presented in near real-time, to allow the global DNS community to act if problems arise. Furthermore, after the Root KSK rollover concludes in March 2018, we will use the recorded datasets for an in-depth analysis, from which the Internet community can draw lessons for future key rollovers.

Vieira, Luiz F.M., Vieira, Marcos A.M..  2017.  Network Coding for 5G Network and D2D Communication. Proceedings of the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :113–120.

Unlike traditional routing where packets are only stored and forward, network coding allows packets to mix together. New packets can be formed by combining other packets. This technique can provide benefits to the network. Network coding has been shown to improve network throughput, reduce energy consumption, improve network robustness and achieve the network capacity. 5G Network is foreseen as a novel network paradigm enabling massive device connectivity and enabling device-to-device communication (D2D). It has many potential applications ranging from ultra high definition video to virtual reality applications. In this paper, we present the advantages, benefits, scenarios, and applications of Network coding for 5G Network and device-to-device communication. We present the state-of-art research, the theoretical benefits, and detail how network coding can improve 5G Networks and D2D communication. Our results show that network coding can almost double the network throughput while increasing network robustness and decreasing the overall time to disseminate messages.

Chole, Sharad, Fingerhut, Andy, Ma, Sha, Sivaraman, Anirudh, Vargaftik, Shay, Berger, Alon, Mendelson, Gal, Alizadeh, Mohammad, Chuang, Shang-Tse, Keslassy, Isaac et al..  2017.  dRMT: Disaggregated Programmable Switching. Proceedings of the Conference of the ACM Special Interest Group on Data Communication. :1–14.
We present dRMT (disaggregated Reconfigurable Match-Action Table), a new architecture for programmable switches. dRMT overcomes two important restrictions of RMT, the predominant pipeline-based architecture for programmable switches: (1) table memory is local to an RMT pipeline stage, implying that memory not used by one stage cannot be reclaimed by another, and (2) RMT is hardwired to always sequentially execute matches followed by actions as packets traverse pipeline stages. We show that these restrictions make it difficult to execute programs efficiently on RMT. dRMT resolves both issues by disaggregating the memory and compute resources of a programmable switch. Specifically, dRMT moves table memories out of pipeline stages and into a centralized pool that is accessible through a crossbar. In addition, dRMT replaces RMT's pipeline stages with a cluster of processors that can execute match and action operations in any order. We show how to schedule a P4 program on dRMT at compile time to guarantee deterministic throughput and latency. We also present a hardware design for dRMT and analyze its feasibility and chip area. Our results show that dRMT can run programs at line rate with fewer processors compared to RMT, and avoids performance cliffs when there are not enough processors to run a program at line rate. dRMT's hardware design incurs a modest increase in chip area relative to RMT, mainly due to the crossbar.
Moons, B., Goetschalckx, K., Berckelaer, N. Van, Verhelst, M..  2017.  Minimum energy quantized neural networks. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :1921–1925.
This work targets the automated minimum-energy optimization of Quantized Neural Networks (QNNs) - networks using low precision weights and activations. These networks are trained from scratch at an arbitrary fixed point precision. At iso-accuracy, QNNs using fewer bits require deeper and wider network architectures than networks using higher precision operators, while they require less complex arithmetic and less bits per weights. This fundamental trade-off is analyzed and quantified to find the minimum energy QNN for any benchmark and hence optimize energy-efficiency. To this end, the energy consumption of inference is modeled for a generic hardware platform. This allows drawing several conclusions across different benchmarks. First, energy consumption varies orders of magnitude at iso-accuracy depending on the number of bits used in the QNN. Second, in a typical system, BinaryNets or int4 implementations lead to the minimum energy solution, outperforming int8 networks up to 2-10× at iso-accuracy. All code used for QNN training is available from https://github.com/BertMoons/.