Mai, Juanyun, Wang, Minghao, Zheng, Jiayin, Shao, Yanbo, Diao, Zhaoqi, Fu, Xinliang, Chen, Yulong, Xiao, Jianyu, You, Jian, Yin, Airu et al..
2022.
MHSnet: Multi-head and Spatial Attention Network with False-Positive Reduction for Lung Nodule Detection. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). :1108—1114.
Mortality from lung cancer has ranked high among cancers for many years. Early detection of lung cancer is critical for disease prevention, cure, and mortality rate reduction. Many existing detection methods on lung nodules can achieve high sensitivity but meanwhile introduce an excessive number of false-positive proposals, which is clinically unpractical. In this paper, we propose the multi-head detection and spatial attention network, shortly MHSnet, to address this crucial false-positive issue. Specifically, we first introduce multi-head detectors and skip connections to capture multi-scale features so as to customize for the variety of nodules in sizes, shapes, and types. Then, inspired by how experienced clinicians screen CT images, we implemented a spatial attention module to enable the network to focus on different regions, which can successfully distinguish nodules from noisy tissues. Finally, we designed a lightweight but effective false-positive reduction module to cut down the number of false-positive proposals, without any constraints on the front network. Compared with the state-of-the-art models, our extensive experimental results show the superiority of this MHSnet not only in the average FROC but also in the false discovery rate (2.64% improvement for the average FROC, 6.39% decrease for the false discovery rate). The false-positive reduction module takes a further step to decrease the false discovery rate by 14.29%, indicating its very promising utility of reducing distracted proposals for the downstream tasks relied on detection results.
Su, Xiangjing, Zhu, Zheng, Xiao, Shiqu, Fu, Yang, Wu, Yi.
2022.
Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
Xin, Wu, Shen, Qingni, Feng, Ke, Xia, Yutang, Wu, Zhonghai, Lin, Zhenghao.
2022.
Personalized User Profiles-based Insider Threat Detection for Distributed File System. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1441—1446.
In recent years, data security incidents caused by insider threats in distributed file systems have attracted the attention of academia and industry. The most common way to detect insider threats is based on user profiles. Through analysis, we realize that based on existing user profiles are not efficient enough, and there are many false positives when a stable user profile has not yet been formed. In this work, we propose personalized user profiles and design an insider threat detection framework, which can intelligently detect insider threats for securing distributed file systems in real-time. To generate personalized user profiles, we come up with a time window-based clustering algorithm and a weighted kernel density estimation algorithm. Compared with non-personalized user profiles, both the Recall and Precision of insider threat detection based on personalized user profiles have been improved, resulting in their harmonic mean F1 increased to 96.52%. Meanwhile, to reduce the false positives of insider threat detection, we put forward operation recommendations based on user similarity to predict new operations that users will produce in the future, which can reduce the false positive rate (FPR). The FPR is reduced to 1.54% and the false positive identification rate (FPIR) is as high as 92.62%. Furthermore, to mitigate the risks caused by inaccurate authorization for users, we present user tags based on operation content and permission. The experimental results show that our proposed framework can detect insider threats more effectively and precisely, with lower FPR and high FPIR.
Wang, Juan, Ma, Chenjun, Li, Ziang, Yuan, Huanyu, Wang, Jie.
2022.
ProcGuard: Process Injection Behaviours Detection Using Fine-grained Analysis of API Call Chain with Deep Learning. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :778—785.
New malware increasingly adopts novel fileless techniques to evade detection from antivirus programs. Process injection is one of the most popular fileless attack techniques. This technique makes malware more stealthy by writing malicious code into memory space and reusing the name and port of the host process. It is difficult for traditional security software to detect and intercept process injections due to the stealthiness of its behavior. We propose a novel framework called ProcGuard for detecting process injection behaviors. This framework collects sensitive function call information of typical process injection. Then we perform a fine-grained analysis of process injection behavior based on the function call chain characteristics of the program, and we also use the improved RCNN network to enhance API analysis on the tampered memory segments. We combine API analysis with deep learning to determine whether a process injection attack has been executed. We collect a large number of malicious samples with process injection behavior and construct a dataset for evaluating the effectiveness of ProcGuard. The experimental results demonstrate that it achieves an accuracy of 81.58% with a lower false-positive rate compared to other systems. In addition, we also evaluate the detection time and runtime performance loss metrics of ProcGuard, both of which are improved compared to previous detection tools.
Huang, Xiaoge, Yin, Hongbo, Wang, Yongsheng, Chen, Qianbin, Zhang, Jie.
2022.
Location-Based Reliable Sharding in Blockchain-Enabled Fog Computing Networks. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). :12—16.
With the explosive growth of the internet of things (IoT) devices, there are amount of data requirements and computing tasks. Fog computing network that could provide computing, caching and communication resources closer to IoT devices (ID) is considered as a potential solution to deal with the vast computing tasks. To improve the performance of the fog computing network while ensuring data security, blockchain technology is enabled and a location-based reliable sharding (LRS) algorithm is proposed, which jointly considers the optimal number of shards, the geographical location of fog nodes (FNs), and the number of nodes in each shard. Firstly, the reliable sharding result is based on the reputation values of FNs, which are related to the decision information and historical reputation value of FNs in the consensus process. Moreover, a reputation based PBFT consensus algorithm is adopted to accelerate the consensus process. Furthermore, the normalized entropy is used to estimate the proportion of malicious nodes and optimize the number of shards. Finally, simulation results show the effectiveness of the proposed scheme.
Wenqi, Huang, Lingyu, Liang, Xin, Wang, Zhengguo, Ren, Shang, Cao, Xiaotao, Jiang.
2022.
An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.