Visible to the public Biblio

Found 958 results

Filters: First Letter Of Last Name is X  [Clear All Filters]
2020-06-01
Xenya, Michael Christopher, Kwayie, Crentsil, Quist-Aphesti, Kester.  2019.  Intruder Detection with Alert Using Cloud Based Convolutional Neural Network and Raspberry Pi. 2019 International Conference on Computing, Computational Modelling and Applications (ICCMA). :46–464.
In this paper, an intruder detection system has been built with an implementation of convolutional neural network (CNN) using raspberry pi, Microsoft's Azure and Twilio cloud systems. The CNN algorithm which is stored in the cloud is implemented to basically classify input data as either intruder or user. By using the raspberry pi as the middleware and raspberry pi camera for image acquisition, efficient execution of the learning and classification operations are performed using higher resources that cloud computing offers. The cloud system is also programmed to alert designated users via multimedia messaging services (MMS) when intruders or users are detected. Furthermore, our work has demonstrated that, though convolutional neural network could impose high computing demands on a processor, the input data could be obtained with low-cost modules and middleware which are of low processing power while subjecting the actual learning algorithm execution to the cloud system.
2020-05-22
Yang, Jiacheng, Chen, Bin, Xia, Shu-Tao.  2019.  Mean-Removed Product Quantization for Approximate Nearest Neighbor Search. 2019 International Conference on Data Mining Workshops (ICDMW). :711—718.
Product quantization (PQ) and its variations are popular and attractive in approximate nearest neighbor search (ANN) due to their lower memory usage and faster retrieval speed. PQ decomposes the high-dimensional vector space into several low-dimensional subspaces, and quantizes each sub-vector in their subspaces, separately. Thus, PQ can generate a codebook containing an exponential number of codewords or indices by a Cartesian product of the sub-codebooks from different subspaces. However, when there is large variance in the average amplitude of the components of the data points, directly utilizing the PQ on the data points would result in poor performance. In this paper, we propose a new approach, namely, mean-removed product quantization (MRPQ) to address this issue. In fact, the average amplitude of a data point or the mean of a date point can be regarded as statistically independent of the variation of the vector, that is, of the way the components vary about this average. Then we can learn a separate scalar quantizer of the means of the data points and apply the PQ to their residual vectors. As shown in our comprehensive experiments on four large-scale public datasets, our approach can achieve substantial improvements in terms of Recall and MAP over some known methods. Moreover, our approach is general which can be combined with PQ and its variations.
2020-05-18
Xiaolei, WANG, Zhengning, YU, Xuemin, NIU, Xianfeng, LU, Hao, YANG, Zhongjiawen, LIU.  2019.  Combination Multiple Faults Diagnosis Method Applied to the Aero-engine Based on Improved Signed Directed Graph. 2019 4th International Conference on Measurement, Information and Control (ICMIC). :1–10.
In signed directed graph (SDG) fault diagnosis model, only single fault can be diagnosed. In order to meet the requirements of multiple faults diagnosis, in this paper, improved signed directed graph (ISDG) fault diagnosis model was proposed. The logic and influence between nodes were included in ISDG model. With ISDG model, complex logic can be shown, multiple faults can be diagnosed and the optimal sequence can be determined. Two algorithms are proposed in this paper. One algorithm can obtain the multiple faults combine logic, and the other algorithm can obtain the optimal path of fault diagnosis. According to these two algorithms, the efficiency was improved and the cost was reduced in the multiple fault diagnosis process. Finally, the faults of an aircraft engine bleed system were diagnosed with the interactive algorithm. The proposed algorithms can obtain a diagnosis result effectively. The results of two cases prove that these algorithms can be used for multiple fault diagnosis.
2020-05-15
Fan, Renshi, Du, Gaoming, Xu, Pengfei, Li, Zhenmin, Song, Yukun, Zhang, Duoli.  2019.  An Adaptive Routing Scheme Based on Q-learning and Real-time Traffic Monitoring for Network-on-Chip. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :244—248.
In the Network on Chip (NoC), performance optimization has always been a research focus. Compared with the static routing scheme, dynamical routing schemes can better reduce the data of packet transmission latency under network congestion. In this paper, we propose a dynamical Q-learning routing approach with real-time monitoring of NoC. Firstly, we design a real-time monitoring scheme and the corresponding circuits to record the status of traffic congestion for NoC. Secondly, we propose a novel method of Q-learning. This method finds an optimal path based on the lowest traffic congestion. Finally, we dynamically redistribute network tasks to increase the packet transmission speed and balance the traffic load. Compared with the C-XY routing and DyXY routing, our method achieved improvement in terms of 25.6%-49.5% and 22.9%-43.8%.
Xing, Junchi, Yang, Mingliang, Zhou, Haifeng, Wu, Chunming, Ruan, Wei.  2019.  Hiding and Trapping: A Deceptive Approach for Defending against Network Reconnaissance with Software-Defined Network. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—8.

Network reconnaissance aims at gathering as much information as possible before an attack is launched. Meanwhile, static host address configuration facilitates network reconnaissance. Currently, more sophisticated network reconnaissance has been emerged with the adaptive and cooperative features. To address this, in this paper, we present Hiding and Trapping (HaT), which is a deceptive approach to disrupt adversarial network reconnaissance with the help of the software-defined networking (SDN) paradigm. HaT is able to hide valuable hosts from attackers and to trap them into decoy nodes through strategic and holistic host address mutation according to characteristic of adversaries. We implement a prototype of HaT, and evaluate its performance by experiments. The experimental results show that HaT is capable to effectively disrupt adversarial network reconnaissance with better deceptive performance than the existing address randomization approach.

2020-05-11
Xue, Kaiping, Zhang, Xiang, Xia, Qiudong, Wei, David S.L., Yue, Hao, Wu, Feng.  2018.  SEAF: A Secure, Efficient and Accountable Access Control Framework for Information Centric Networking. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2213–2221.
Information Centric Networking (ICN) has been regarded as an ideal architecture for the next-generation network to handle users' increasing demand for content delivery with in-network cache. While making better use of network resources and providing better delivery service, an effective access control mechanism is needed due to wide dissemination of contents. However, in the existing solutions, making cache-enabled routers or content providers authenticate users' requests causes high computation overhead and unnecessary delay. Also, straightforward utilization of advanced encryption algorithms increases the opportunities for DoS attacks. Besides, privacy protection and service accountability are rarely taken into account in this scenario. In this paper, we propose a secure, efficient, and accountable access control framework, called SEAF, for ICN, in which authentication is performed at the network edge to block unauthorized requests at the very beginning. We adopt group signature to achieve anonymous authentication, and use hash chain technique to greatly reduce the overhead when users make continuous requests for the same file. Furthermore, the content providers can affirm the service amount received from the network and extract feedback information from the signatures and hash chains. By formal security analysis and the comparison with related works, we show that SEAF achieves the expected security goals and possesses more useful features. The experimental results also demonstrate that our design is efficient for routers and content providers, and introduces only slight delay for users' content retrieval.
Takahashi, Daisuke, Xiao, Yang, Li, Tieshan.  2018.  Database Structures for Accountable Flow-Net Logging. 2018 10th International Conference on Communication Software and Networks (ICCSN). :254–258.
Computer and network accountability is to make every action in computers and networks accountable. In order to achieve accountability, we need to answer the following questions: what did it happen? When did it happen? Who did it? In order to achieve accountability, the first step is to record what exactly happened. Therefore, an accountable logging is needed and implemented in computers and networks. Our previous work proposed a novel accountable logging methodology called Flow-Net. However, how to storage the huge amount of Flow-net logs into databases is not clear. In this paper, we try to answer this question.
2020-05-08
Ali, Yasir, Shen, Zhen, Zhu, Fenghua, Xiong, Gang, Chen, Shichao, Xia, Yuanqing, Wang, Fei-Yue.  2018.  Solutions Verification for Cloud-Based Networked Control System using Karush-Kuhn-Tucker Conditions. 2018 Chinese Automation Congress (CAC). :1385—1389.
The rapid development of the Cloud Computing Technologies (CCTs) has amended the conventional design of resource-constrained Network Control System (NCS) to the powerful and flexible design of Cloud-Based Networked Control System (CB-NCS) by relocating the processing part to the cloud server. This arrangement has produced many internets based exquisite applications. However, this new arrangement has also raised many network security challenges for the cloud-based control system related to cyber-physical part of the system. In the absence of robust verification methodology, an attacker can launch the modification attack in order to destabilize or take control of NCS. It is desirable that there shall be a solution authentication methodology used to verify whether the incoming solutions are coming from the cloud or not. This paper proposes a methodology used for the verification of the receiving solution to the local control system from the cloud using Karush-Kuhn-Tucker (KKT) conditions, which is then applied to actuator after verification and thus ensure the stability in case of modification attack.
Saccente, Nicholas, Dehlinger, Josh, Deng, Lin, Chakraborty, Suranjan, Xiong, Yin.  2019.  Project Achilles: A Prototype Tool for Static Method-Level Vulnerability Detection of Java Source Code Using a Recurrent Neural Network. 2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW). :114—121.

Software has become an essential component of modern life, but when software vulnerabilities threaten the security of users, new ways of analyzing for software security must be explored. Using the National Institute of Standards and Technology's Juliet Java Suite, containing thousands of examples of defective Java methods for a variety of vulnerabilities, a prototype tool was developed implementing an array of Long-Short Term Memory Recurrent Neural Networks to detect vulnerabilities within source code. The tool employs various data preparation methods to be independent of coding style and to automate the process of extracting methods, labeling data, and partitioning the dataset. The result is a prototype command-line utility that generates an n-dimensional vulnerability prediction vector. The experimental evaluation using 44,495 test cases indicates that the tool can achieve an accuracy higher than 90% for 24 out of 29 different types of CWE vulnerabilities.

2020-04-24
Jianfeng, Dai, Jian, Qiu, Jing, Wu, Xuesong, Wang.  2019.  A Vulnerability Assessment Method of Cyber Physical Power System Considering Power-Grid Infrastructures Failure. 2019 IEEE Sustainable Power and Energy Conference (iSPEC). :1492—1496.
In order to protect power grid network, the security assessment techniques which include both cyber side and the physical side should be considered. In this paper, we present a method for evaluating the dynamic vulnerability of cyber-physical power system (CPPS) considering the power grid infrastructures failure. First, according to the functional characteristics of different components, the impact of a single component function failure on CPPS operation is analyzed and quantified, such as information components, communication components and power components; then, the dynamic vulnerability of multiple components synchronization function failure is calculated, and the full probability evaluation formula of CPPS operational dynamic vulnerability is built; Thirdly, from an attacker's perspective to identify the most hazardous component combinations for CPPS multi-node collaborative attack; Finally, a local CPPS model is established based on the IEEE-9 bus system to quantify its operational dynamic vulnerability, and the effectiveness of proposed method is verified.
Yang, Yi, Xu, Wei, Wang, Sixin, Wei, Kunlun.  2018.  Modeling and Analysis of CPS Availability Based on the Object-oriented Timed Petri Nets. 2018 37th Chinese Control Conference (CCC). :6172—6177.

Cyber-Physical Systems (CPS) is mostly deployed in security-critical applications where their failures can cause serious consequences, and therefore it is critical to evaluate its availability. In this paper, an architecture model of CPS is established from the perspective of object-oriented system. The system is a unified whole formed by various independent objects (including sensors, controllers and actuators) through communication connection. Then the paper presents the Object-oriented Timed Petri Net to model the system. The modeling method can be used to describe the whole system and the characteristics of the object. At the same time, the availability analysis of the system is carried out by using the mathematical analysis method and simulation tool of Petri net. Finally, a concrete case is given to verify the feasibility of the modeling method in CPS availability analysis.

2020-04-20
Xiao, Tianrui, Khisti, Ashish.  2019.  Maximal Information Leakage based Privacy Preserving Data Disclosure Mechanisms. 2019 16th Canadian Workshop on Information Theory (CWIT). :1–6.
It is often necessary to disclose training data to the public domain, while protecting privacy of certain sensitive labels. We use information theoretic measures to develop such privacy preserving data disclosure mechanisms. Our mechanism involves perturbing the data vectors to strike a balance in the privacy-utility trade-off. We use maximal information leakage between the output data vector and the confidential label as our privacy metric. We first study the theoretical Bernoulli-Gaussian model and study the privacy-utility trade-off when only the mean of the Gaussian distributions can be perturbed. We show that the optimal solution is the same as the case when the utility is measured using probability of error at the adversary. We then consider an application of this framework to a data driven setting and provide an empirical approximation to the Sibson mutual information. By performing experiments on the MNIST and FERG data sets, we show that our proposed framework achieves equivalent or better privacy than previous methods based on mutual information.
Xiang, Wei.  2019.  An Efficient Location Privacy Preserving Model based on Geohash. 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC). :1–5.
With the rapid development of location-aware mobile devices, location-based services have been widely used. When LBS (Location Based Services) bringing great convenience and profits, it also brings great hidden trouble, among which user privacy security is one of them. The paper builds a LBS privacy protection model and develops algorithm depend on the technology of one dimensional coding of Geohash geographic information. The results of experiments and data measurements show that the model the model has reached k-anonymity effect and has good performance in avoiding attacking from the leaked information in a continuous query with the user's background knowledge. It also has a preferable performance in time cost of system process.
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.
2020-04-17
Xie, Cihang, Wu, Yuxin, Maaten, Laurens van der, Yuille, Alan L., He, Kaiming.  2019.  Feature Denoising for Improving Adversarial Robustness. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :501—509.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. Our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 — it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by 10%. Code is available at https://github.com/facebookresearch/ImageNet-Adversarial-Training.

Yang, Zihan, Mi, Zeyu, Xia, Yubin.  2019.  Undertow: An Intra-Kernel Isolation Mechanism for Hardware-Assisted Virtual Machines. 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). :257—2575.
The prevalence of Cloud Computing has appealed many users to put their business into low-cost and flexible cloud servers instead of bare-metal machines. Most virtual machines in the cloud run commodity operating system(e.g., linux), and the complexity of such operating systems makes them more bug-prone and easier to be compromised. To mitigate the security threats, previous works attempt to mediate and filter system calls, transform all unpopular paths into popular paths, or implement a nested kernel along with the untrusted outter kernel to enforce certain security policies. However, such solutions only enforce read-only protection or assume that popular paths in the kernel to contain almost no bug, which is not always the case in the real world. To overcome their shortcomings and combine their advantages as much as possible, we propose a hardware-assisted isolation mechanism that isolates untrusted part of the kernel. To achieve isolation, we prepare multiple restricted Extended Page Table (EPT) during boot time, each of which has certain critical data unmapped from it so that the code executing in the isolated environment could not access sensitive data. We leverage the VMFUNC instruction already available in recent Intel processors to directly switch to another pre-defined EPT inside guest virtual machine without trapping into the underlying hypervisor, which is faster than the traditional trap-and-emulate procedure. The semantic gap is minimized and real-time check is achieved by allowing EPT violations to be converted to Virtualization Exception (VE), which could be handled inside guest kernel in non-root mode. Our preliminary evaluation shows that with hardware virtualization feature, we are able to run the untrusted code in an isolated environment with negligible overhead.
2020-04-06
Xuebing, Wang, Na, Qin, Yantao, Liu.  2019.  A Secure Network Coding System Against Wiretap Attacks. 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). :62—67.

Cyber security is a vital performance metric for networks. Wiretap attacks belong to passive attacks. It commonly exists in wired or wireless networks, where an eavesdropper steals useful information by wiretapping messages being shipped on network links. It seriously damages the confidentiality of communications. This paper proposed a secure network coding system architecture against wiretap attacks. It combines and collaborates network coding with cryptography technology. Some illustrating examples are given to show how to build such a system and prove its defense is much stronger than a system with a single defender, either network coding or cryptography. Moreover, the system is characterized by flexibility, simplicity, and easy to set up. Finally, it could be used for both deterministic and random network coding system.

Sun, Xuezi, Xu, Guangxian, Liu, Chao.  2019.  A Network Coding Optimization Scheme for Niche Algorithm based on Security Performance. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1969—1972.

The network coding optimization based on niche genetic algorithm can observably reduce the network overhead of encoding technology, however, security issues haven't been considered in the coding operation. In order to solve this problem, we propose a network coding optimization scheme for niche algorithm based on security performance (SNGA). It is on the basis of multi-target niche genetic algorithm(NGA)to construct a fitness function which with k-secure network coding mechanism, and to ensure the realization of information security and achieve the maximum transmission of the network. The simulation results show that SNGA can effectively improve the security of network coding, and ensure the running time and convergence speed of the optimal solution.

Li, Jiabin, Xue, Zhi.  2019.  Distributed Threat Intelligence Sharing System: A New Sight of P2P Botnet Detection. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Botnet has been evolving over time since its birth. Nowadays, P2P (Peer-to-Peer) botnet has become a main threat to cyberspace security, owing to its strong concealment and easy expansibility. In order to effectively detect P2P botnet, researchers often focus on the analysis of network traffic. For the sake of enriching P2P botnet detection methods, the author puts forward a new sight of applying distributed threat intelligence sharing system to P2P botnet detection. This system aims to fight against distributed botnet by using distributed methods itself, and then to detect botnet in real time. To fulfill the goal of botnet detection, there are 3 important parts: the threat intelligence sharing and evaluating system, the BAV quantitative TI model, and the AHP and HMM based analysis algorithm. Theoretically, this method should work on different types of distributed cyber threat besides P2P botnet.

Liu, Lan, Lin, Jun, Wang, Qiang, Xu, Xiaoping.  2018.  Research on Network Malicious Code Detection and Provenance Tracking in Future Network. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :264–268.
with the development of SDN, ICN and 5G networks, the research of future network becomes a hot topic. Based on the design idea of SDN network, this paper analyzes the propagation model and detection method of malicious code in future network. We select characteristics of SDN and analyze the features use different feature selection methods and sort the features. After comparison the influence of running time by different classification algorithm of different feature selection, we analyze the choice of reduction dimension m, and find out the different types of malicious code corresponding to the optimal feature subset and matching classification method, designed for malware detection system. We analyze the node migration rate of malware in mobile network and its effect on the outbreak of the time. In this way, it can provide reference for the management strategy of the switch node or the host node by future network controller.
2020-03-30
Ximenes, Agostinho Marques, Sukaridhoto, Sritrusta, Sudarsono, Amang, Ulil Albaab, Mochammad Rifki, Basri, Hasan, Hidayat Yani, Muhammad Aksa, Chang Choon, Chew, Islam, Ezharul.  2019.  Implementation QR Code Biometric Authentication for Online Payment. 2019 International Electronics Symposium (IES). :676–682.
Based on the Indonesian of Statistics the level of society people in 2019 is grow up. Based on data, the bank conducted a community to simple transaction payment in the market. Bank just used a debit card or credit card for the transaction, but the banks need more investment for infrastructure and very expensive. Based on that cause the bank needs another solution for low-cost infrastructure. Obtained from solutions that, the bank implementation QR Code Biometric authentication Payment Online is one solution that fulfills. This application used for payment in online merchant. The transaction permits in this study lie in the biometric encryption, or decryption transaction permission and QR Code Scan to improve communication security and transaction data. The test results of implementation Biometric Cloud Authentication Platform show that AES 256 agents can be implemented for face biometric encryption and decryption. Code Scan QR to carry out transaction permits with Face verification transaction permits gets the accuracy rate of 95% for 10 sample people and transaction process gets time speed of 53.21 seconds per transaction with a transaction sample of 100 times.
2020-03-27
Xu, Zheng, Abraham, Jacob.  2019.  Resilient Reorder Buffer Design for Network-on-Chip. 20th International Symposium on Quality Electronic Design (ISQED). :92–97.

Functionally safe control logic design without full duplication is difficult due to the complexity of random control logic. The Reorder buffer (ROB) is a control logic function commonly used in high performance computing systems. In this study, we focus on a safe ROB design used in an industry quality Network-on-Chip (NoC) Advanced eXtensible Interface (AXI) Network Interface (NI) block. We developed and applied area efficient safe design techniques including partial duplication, Error Detection Code (EDC) and invariance checking with formal proofs and showed that we can achieve a desired safe Diagnostic Coverage (DC) requirement with small area and power overheads and no performance degradation.

2020-03-23
Xuewei, Feng, Dongxia, Wang, Zhechao, Lin.  2019.  An Approach of Code Pointer Hiding Based on a Resilient Area. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :204–209.

Code reuse attacks can bypass the DEP mechanism effectively. Meanwhile, because of the stealthy of the operation, it becomes one of the most intractable threats while securing the information system. Although the security solutions of code randomization and diversity can mitigate the threat at a certain extent, attackers can bypass these solutions due to the high cost and coarsely granularity, and the memory disclosure vulnerability is another magic weapon which can be used by attackers to bypass these solutions. After analyzing the principle of memory disclosure vulnerability, we propose a novel code pointer hiding method based on a resilient area. We expatiate how to create the resilient area and achieve code pointer hiding from four aspects, namely hiding return addresses in data pages, hiding function pointers in data pages, hiding target pointers of instruction JUMP in code pages, and hiding target pointers of instruction CALL in code pages. This method can stop attackers from reading and analyzing pages in memory, which is a critical stage in finding and creating ROP chains while executing a code reuse attack. Lastly, we test the method contrastively, and the results show that the method is feasible and effective while defending against ROP attacks.

Xiao-Mei, Liu, Yong, Qian.  2019.  Research on LED lightweight cryptographic algorithm based on RFID tag of Internet of things. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1717–1720.
In recent years, with the rapid development of Internet of things, RFID tags have been widely used, in due to the chip used in radio frequency identification (RFID) tags is more demanding for resources, which also brings a great threat to the safety performance of cryptographic algorithms in differential power analysis (DPA). For this purpose, it is necessary to study the LED lightweight cryptography algorithm of RFID tags in the Internet of things, so as to explore a lightweight and secure cryptographic algorithm which can be applied to RFID Tags. In this paper, through the combination of Piccolo cryptographic algorithm and the new DPA protection technology threshold, we propose a LED lightweight cryptographic algorithm which can be applied to the RFID tag of the Internet of things. With the help of improve d exhaustive search and Boolean expression reconstruction, the two methods share the implementation of the S -box and the InvS-box, thereby effectively solves the burr threat problem of the S-box and the InvS-box in the sharing implementation process, the security performance of the algorithm is evaluated by the DPA attack of FPGA. The results show that the algorithm can achieve lightweight and security performance at the same time, can effectively meet the light and security requirements of RFID tag chip of Internet of things for cryptographic algorithms.