Biblio
As an extension of cloud computing, fog computing environment as well as fog node plays an increasingly important role in internet of things (IoT). This technology provides IoT with more distributed and efficient applications and services. However, IoT nodes have so much variety and perform poorly, which leads to more security issues. For this situation, we initially design a security scheme for the IoT fog environment. Based on the combination of Blockchain and Trusted Execution Environment (TEE) technologies, the security of data storage and transmission from fog nodes to the cloud are ensured, thus ensuring the trustworthiness of the data source in the fog environment.
DNA cryptography becomes a burgeoning new area of study along with the fast-developing of DNA computing and modern cryptography. Point-doubling, point-addition and point-multiplication are three fundamental point-operations to construct encryption protocols in some cryptosystem over mathematical curves such as elliptic curves and conic curves. This paper proposes a DNA computing model to calculate point-doubling in conic curves cryptosystem over finite held GF(2n). By decomposing and rearranging the computing steps of point-doubling, the assembly process could be fulfilled by using 8 different types of computation tiles performing different functions with 1097 encoding ways. This model could also figure out point-multiplication if its coefficient is 2k. The assembly time complexity is 2kn+n-k-1, and the space complexity is k2n2+kn2-k2n.
Online controlled experiments (a.k.a. A/B testing) have been used as the mantra for data-driven decision making on feature changing and product shipping in many Internet companies. However, it is still a great challenge to systematically measure how every code or feature change impacts millions of users with great heterogeneity (e.g. countries, ages, devices). The most commonly used A/B testing framework in many companies is based on Average Treatment Effect (ATE), which cannot detect the heterogeneity of treatment effect on users with different characteristics. In this paper, we propose statistical methods that can systematically and accurately identify Heterogeneous Treatment Effect (HTE) of any user cohort of interest (e.g. mobile device type, country), and determine which factors (e.g. age, gender) of users contribute to the heterogeneity of the treatment effect in an A/B test. By applying these methods on both simulation data and real-world experimentation data, we show how they work robustly with controlled low False Discover Rate (FDR), and at the same time, provides us with useful insights about the heterogeneity of identified user groups. We have deployed a toolkit based on these methods, and have used it to measure the Heterogeneous Treatment Effect of many A/B tests at Snap.
Traffic state estimation helps urban traffic control and management. In this paper, a traffic state estimation model based on the fusion of Hidden Markov model and SEA algorithm is proposed considering the randomness and volatility of traffic systems. Traffic data of average travel speed in selected city were collected, and the mean and fluctuation values of average travel speed in adjacent time windows were calculated. With Hidden Markov model, the system state network is defined according to mean values and fluctuation values. The operation efficiency of traffic system, as well as stability and trend values, were calculated with System Effectiveness Analysis (SEA) algorithm based on system state network. Calculation results show that the method perform well and can be applied to both traffic state assessment of certain road sections and large scale road networks.
Compressed sensing (CS) integrates sampling and compression into a single step to reduce the processed data amount. However, the CS reconstruction generally suffers from high complexity. To solve this problem, compressive signal processing (CSP) is recently proposed to implement some signal processing tasks directly in the compressive domain without reconstruction. Among various CSP techniques, compressive detection achieves the signal detection based on the CS measurements. This paper investigates the compressive detection problem of random signals when the measurements are corrupted. Different from the current studies that only consider the dense noise, our study considers both the dense noise and sparse error. The theoretical performance is derived, and simulations are provided to verify the derived theoretical results.
In this article, we study the transmission secrecy performance of primary user in overlay cognitive wireless networks, in which an untrusted energy-limited secondary cooperative user assists the primary transmission to exchange for the spectrum resource. In the network, the information can be simultaneously transmitted through the direct and relay links. For the enhancement of primary transmission security, a maximum ratio combining (MRC) scheme is utilized by the receiver to exploit the two copies of source information. For the security analysis, we firstly derive the tight lower bound expression for secrecy outage probability (SOP). Then, three asymptotic expressions for SOP are also expressed to further analyze the impacts of the transmit power and the location of secondary cooperative node on the primary user information security. The findings show that the primary user information secrecy performance enhances with the improvement of transmit power. Moreover, the smaller the distance between the secondary node and the destination, the better the primary secrecy performance.
The increasing adoption of 3D printing in many safety and mission critical applications exposes 3D printers to a variety of cyber attacks that may result in catastrophic consequences if the printing process is compromised. For example, the mechanical properties (e.g., physical strength, thermal resistance, dimensional stability) of 3D printed objects could be significantly affected and degraded if a simple printing setting is maliciously changed. To address this challenge, this study proposes a model-free real-time online process monitoring approach that is capable of detecting and defending against the cyber-physical attacks on the firmwares of 3D printers. Specifically, we explore the potential attacks and consequences of four key printing attributes (including infill path, printing speed, layer thickness, and fan speed) and then formulate the attack models. Based on the intrinsic relation between the printing attributes and the physical observations, our defense model is established by systematically analyzing the multi-faceted, real-time measurement collected from the accelerometer, magnetometer and camera. The Kalman filter and Canny filter are used to map and estimate three aforementioned critical toolpath information that might affect the printing quality. Mel-frequency Cepstrum Coefficients are used to extract features for fan speed estimation. Experimental results show that, for a complex 3D printed design, our method can achieve 4% Hausdorff distance compared with the model dimension for infill path estimate, 6.07% Mean Absolute Percentage Error (MAPE) for speed estimate, 9.57% MAPE for layer thickness estimate, and 96.8% accuracy for fan speed identification. Our study demonstrates that, this new approach can effectively defend against the cyber-physical attacks on 3D printers and 3D printing process.
Pattern lock has been widely used for authentication to protect user privacy on mobile devices (e.g., smartphones and tablets). Several attacks have been constructed to crack the lock. However, these approaches require the attackers to be either physically close to the target device or able to manipulate the network facilities (e.g., wifi hotspots) used by the victims. Therefore, the effectiveness of the attacks is highly sensitive to the setting of the environment where the users use the mobile devices. Also, these attacks are not scalable since they cannot easily infer patterns of a large number of users. Motivated by an observation that fingertip motions on the screen of a mobile device can be captured by analyzing surrounding acoustic signals on it, we propose PatternListener, a novel acoustic attack that cracks pattern lock by leveraging and analyzing imperceptible acoustic signals reflected by the fingertip. It leverages speakers and microphones of the victim's device to play imperceptible audio and record the acoustic signals reflected from the fingertip. In particular, it infers each unlock pattern by analyzing individual lines that are the trajectories of the fingertip and composed of the pattern. We propose several algorithms to construct signal segments for each line and infer possible candidates of each individual line according to the signal segments. Finally, we produce a tree to map all line candidates into grid patterns and thereby obtain the candidates of the entire unlock pattern. We implement a PatternListener prototype by using off-the-shelf smartphones and thoroughly evaluate it using 130 unique patterns. The real experimental results demonstrate that PatternListener can successfully exploit over 90% patterns in five attempts.
The Internet of Things is stepping out of its infancy into full maturity, requiring massive data processing and storage. Unfortunately, because of the unique characteristics of resource constraints, short-range communication, and self-organization in IoT, it always resorts to the cloud or fog nodes for outsourced computation and storage, which has brought about a series of novel challenging security and privacy threats. For this reason, one of the critical challenges of having numerous IoT devices is the capacity to manage them and their data. A specific concern is from which devices or Edge clouds to accept join requests or interaction requests. This paper discusses a design concept for developing the IoT data management platform, along with a data management and lineage traceability implementation of the platform based on blockchain and smart contracts, which approaches the two major challenges: how to implement effective data management and enrich rational interoperability for trusted groups of linked Things; And how to settle conflicts between untrusted IoT devices and its requests taking into account security and privacy preserving. Experimental results show that the system scales well with the loss of computing and communication performance maintaining within the acceptable range, works well to effectively defend against unauthorized access and empower data provenance and transparency, which verifies the feasibility and efficiency of the design concept to provide privacy, fine-grained, and integrity data management over the IoT devices by introducing the blockchain-based data management platform.
As a modern power transmission network, smart grid connects plenty of terminal devices. However, along with the growth of devices are the security threats. Different from the previous separated environment, an adversary nowadays can destroy the power system by attacking these devices. Therefore, it's critical to ensure the security and safety of terminal devices. To achieve this goal, detecting the pre-existing vulnerabilities of the device program and enhance the terminal security, are of great importance and necessity. In this paper, we propose a novel approach that detects existing buffer-overflow vulnerabilities of terminal devices via automatic static analysis (ASA). We utilize the static analysis to extract the device program information and build corresponding program models. By further matching the generated program model with pre-defined vulnerability patterns, we achieve vulnerability detection and error reporting. The evaluation results demonstrate that our method can effectively detect buffer-overflow vulnerabilities of smart terminals with a high accuracy and a low false positive rate.
SDN (Software Defined Network) with multiple controllers draws more attention for the increasing scale of the network. The architecture can handle what SDN with single controller is not able to address. In order to understand what this architecture can accomplish and face precisely, we analyze it with formal methods. In this paper, we apply CSP (Communicating Sequential Processes) to model the routing service of SDN under HyperFlow architecture based on OpenFlow protocol. By using model checker PAT (Process Analysis Toolkit), we verify that the models satisfy three properties, covering deadlock freeness, consistency and fault tolerance.
The return-oriented programming(ROP) attack has been a common access to exploit software vulnerabilities in the modern operating system(OS). An attacker can execute arbitrary code with the aid of ROP despite security mechanisms are involved in OS. In order to mitigate ROP attack, defense mechanisms are also drawn researchers' attention. Besides, research on the benign use of ROP become a hot spot in recent years, since ROP has a perfect resistance to static analysis, which can be adapted to hide some important code. The results in benign use also benefit from a low overhead on program size. The paper discusses the concepts of ROP attack as well as extended ROP attack in recent years. Corresponding defense mechanisms based on randomization, frequency, and control flow integrity are analyzed as well, besides, we also analyzed limitations in this defense mechanisms. Later, we discussed the benign use of ROP in steganography, code integrity verification, and software watermarking, which showed the significant promotion by adopting ROP. At the end of this paper, we looked into the development of ROP attack, the future of possible mitigation strategies and the potential for benign use.