Biblio
Recent years, more and more testing criteria for deep learning systems has been proposed to ensure system robustness and reliability. These criteria were defined based on different perspectives of diversity. However, there lacks comprehensive investigation on what are the most essential diversities that should be considered by a testing criteria for deep learning systems. Therefore, in this paper, we conduct an empirical study to investigate the relation between test diversities and erroneous behaviors of deep learning models. We define five metrics to reflect diversities in neuron activities, and leverage metamorphic testing to detect erroneous behaviors. We investigate the correlation between metrics and erroneous behaviors. We also go further step to measure the quality of test suites under the guidance of defined metrics. Our results provided comprehensive insights on the essential diversities for testing criteria to exhibit good fault detection ability.
It is common to certify when a file was created in digital investigations, e.g., determining first inventors for patentable ideas in intellectual property systems to resolve disputes. Secure time-stamping schemes can be derived from blockchain-based storage to protect files from backdating/forward-dating, where a file is integrated into a transaction on a blockchain and the timestamp of the corresponding block reflects the latest time the file was created. Nevertheless, blocks' timestamps in blockchains suffer from time errors, which causes the inaccuracy of files' timestamps. In this paper, we propose an accurate blockchain-based time-stamping scheme called Chronos. In Chronos, when a file is created, the file and a sufficient number of successive blocks that are latest confirmed on blockchain are integrated into a transaction. Due to chain quality, it is computationally infeasible to pre-compute these blocks. The time when the last block was chained to the blockchain serves as the earliest creation time of the file. The time when the block including the transaction was chained indicates the latest creation time of the file. Therefore, Chronos makes the file's creation time corresponding to this time interval. Based on chain growth, Chronos derives the time when these two blocks were chained from their heights on the blockchain, which ensures the accuracy of the file's timestamp. The security and performance of Chronos are demonstrated by a comprehensive evaluation.
The globalization of supply chain makes semiconductor chips susceptible to various security threats. Design obfuscation techniques have been widely investigated to thwart intellectual property (IP) piracy attacks. Key distribution among IP providers, system integration team, and end users remains as a challenging problem. This work proposes an orthogonal obfuscation method, which utilizes an orthogonal matrix to authenticate obfuscation keys, rather than directly examining each activation key. The proposed method hides the keys by using an orthogonal obfuscation algorithm to increasing the key retrieval time, such that the primary keys for IP cores will not be leaked. The simulation results show that the proposed method reduces the key retrieval time by 36.3% over the baseline. The proposed obfuscation methods have been successfully applied to ISCAS'89 benchmark circuits. Experimental results indicate that the orthogonal obfuscation only increases the area by 3.4% and consumes 4.7% more power than the baseline1.
With the rapid development of the Internet of vehicles, there is a huge amount of multimedia data becoming a hidden trouble in the Internet of Things. Therefore, it is necessary to process and store them in real time as a way of big data curation. In this paper, a method of real-time processing and storage based on CDN in vehicle monitoring system is proposed. The MPEG-DASH standard is used to process the multimedia data by dividing them into MPD files and media segments. A real-time monitoring system of vehicle on the basis of the method introduced is designed and implemented.
Crowd sensing is one of the core features of internet of vehicles, the use of internet of vehicles for crowd sensing is conducive to the rational allocation of sensing tasks. This paper mainly studies the problem of task allocation for crowd sensing in internet of vehicles, proposes a trajectory-based task allocation scheme for crowd sensing in internet of vehicles. With limited budget constraints, participants' trajectory is taken as an indicator of the spatiotemporal availability. Based on the solution idea of the minimal-cover problem, select the minimum number of participating vehicles to achieve the coverage of the target area.
The Rowhammer bug is a novel micro-architectural security threat, enabling powerful privilege-escalation attacks on various mainstream platforms. It works by actively flipping bits in Dynamic Random Access Memory (DRAM) cells with unprivileged instructions. In order to set up Rowhammer against binaries in the Linux page cache, the Waylaying algorithm has previously been proposed. The Waylaying method stealthily relocates binaries onto exploitable physical addresses without exhausting system memory. However, the proof-of-concept Waylaying algorithm can be easily detected during page cache eviction because of its high disk I/O overhead and long running time. This paper proposes the more advanced Memway algorithm, which improves on Waylaying in terms of both I/O overhead and speed. Running time and disk I/O overhead are reduced by 90% by utilizing Linux tmpfs and inmemory swapping to manage eviction files. Furthermore, by combining Memway with the unprivileged posix fadvise API, the binary relocation step is made 100 times faster. Equipped with our Memway+fadvise relocation scheme, we demonstrate practical Rowhammer attacks that take only 15-200 minutes to covertly relocate a victim binary, and less than 3 seconds to flip the target instruction bit.
Mobile phones have become nowadays a commodity to the majority of people. Using them, people are able to access the world of Internet and connect with their friends, their colleagues at work or even unknown people with common interests. This proliferation of the mobile devices has also been seen as an opportunity for the cyber criminals to deceive smartphone users and steel their money directly or indirectly, respectively, by accessing their bank accounts through the smartphones or by blackmailing them or selling their private data such as photos, credit card data, etc. to third parties. This is usually achieved by installing malware to smartphones masking their malevolent payload as a legitimate application and advertise it to the users with the hope that mobile users will install it in their devices. Thus, any existing application can easily be modified by integrating a malware and then presented it as a legitimate one. In response to this, scientists have proposed a number of malware detection and classification methods using a variety of techniques. Even though, several of them achieve relatively high precision in malware classification, there is still space for improvement. In this paper, we propose a text mining all repeated pattern detection method which uses the decompiled files of an application in order to classify a suspicious application into one of the known malware families. Based on the experimental results using a real malware dataset, the methodology tries to correctly classify (without any misclassification) all randomly selected malware applications of 3 categories with 3 different families each.
The main challenge for malware researchers is the large amount of data and files that need to be evaluated for potential threats. Researchers analyze a large number of new malware daily and classify them in order to extract common features. Therefore, a system that can ensure and improve the efficiency and accuracy of the classification is of great significance for the study of malware characteristics. A high-performance, high-efficiency automatic classification system based on multi-feature selection fusion of machine learning is proposed in this paper. Its performance and efficiency, according to our experiments, have been greatly improved compared to single-featured systems.
With the proliferation of smartphones, a novel sensing paradigm called Mobile Crowd Sensing (MCS) has emerged very recently. However, the attacks and faults in MCS cause a serious false data problem. Observing the intrinsic low dimensionality of general monitoring data and the sparsity of false data, false data detection can be performed based on the separation of normal data and anomalies. Although the existing separation algorithm based on Direct Robust Matrix Factorization (DRMF) is proven to be effective, requiring iteratively performing Singular Value Decomposition (SVD) for low-rank matrix approximation would result in a prohibitively high accumulated computation cost when the data matrix is large. In this work, we observe the quick false data location feature from our empirical study of DRMF, based on which we propose an intelligent Light weight Low Rank and False Matrix Separation algorithm (LightLRFMS) that can reuse the previous result of the matrix decomposition to deduce the one for the current iteration step. Our algorithm can largely speed up the whole iteration process. From a theoretical perspective, we validate that LightLRFMS only requires one round of SVD computation and thus has very low computation cost. We have done extensive experiments using a PM 2.5 air condition trace and a road traffic trace. Our results demonstrate that LightLRFMS can achieve very good false data detection performance with the same highest detection accuracy as DRMF but with up to 10 times faster speed thanks to its lower computation cost.
As an emerging paradigm for energy-efficiency design, approximate computing can reduce power consumption through simplification of logic circuits. Although calculation errors are caused by approximate computing, their impacts on the final results can be negligible in some error resilient applications, such as Convolutional Neural Networks (CNNs). Therefore, approximate computing has been applied to CNNs to reduce the high demand for computing resources and energy. Compared with the traditional method such as reducing data precision, this paper investigates the effect of approximate computing on the accuracy and power consumption of CNNs. To optimize the approximate computing technology applied to CNNs, we propose a method for quantifying the error resilience of each neuron by theoretical analysis and observe that error resilience varies widely across different neurons. On the basic of quantitative error resilience, dynamic adaptation of approximate bit-width and the corresponding configurable adder are proposed to fully exploit the error resilience of CNNs. Experimental results show that the proposed method further improves the performance of power consumption while maintaining high accuracy. By adopting the optimal approximate bit-width for each layer found by our proposed algorithm, dynamic adaptation of approximate bit-width reduces power consumption by more than 30% and causes less than 1% loss of the accuracy for LeNet-5.
This paper is to design substitution boxes (S-Boxes) using innovative I-Ching operators (ICOs) that have evolved from ancient Chinese I-Ching philosophy. These three operators-intrication, turnover, and mutual- inherited from I-Ching are specifically designed to generate S-Boxes in cryptography. In order to analyze these three operators, identity, compositionality, and periodicity measures are developed. All three operators are only applied to change the output positions of Boolean functions. Therefore, the bijection property of S-Box is satisfied automatically. It means that our approach can avoid singular values, which is very important to generate S-Boxes. Based on the periodicity property of the ICOs, a new network is constructed, thus to be applied in the algorithm for designing S-Boxes. To examine the efficiency of our proposed approach, some commonly used criteria are adopted, such as nonlinearity, strict avalanche criterion, differential approximation probability, and linear approximation probability. The comparison results show that S-Boxes designed by applying ICOs have a higher security and better performance compared with other schemes. Furthermore, the proposed approach can also be used to other practice problems in a similar way.
Although sequence-to-sequence attentional neural machine translation (NMT) has achieved great progress recently, it is confronted with two challenges: learning optimal model parameters for long parallel sentences and well exploiting different scopes of contexts. In this paper, partially inspired by the idea of segmenting a long sentence into short clauses, each of which can be easily translated by NMT, we propose a hierarchy-to-sequence attentional NMT model to handle these two challenges. Our encoder takes the segmented clause sequence as input and explores a hierarchical neural network structure to model words, clauses, and sentences at different levels, particularly with two layers of recurrent neural networks modeling semantic compositionality at the word and clause level. Correspondingly, the decoder sequentially translates segmented clauses and simultaneously applies two types of attention models to capture contexts of interclause and intraclause for translation prediction. In this way, we can not only improve parameter learning, but also well explore different scopes of contexts for translation. Experimental results on Chinese-English and English-German translation demonstrate the superiorities of the proposed model over the conventional NMT model.
More and more security and privacy issues are arising as new technologies, such as big data and cloud computing, are widely applied in nowadays. For decreasing the privacy breaches in access control system under opening and cross-domain environment. In this paper, we suggest a game and risk based access model for privacy preserving by employing Shannon information and game theory. After defining the notions of Privacy Risk and Privacy Violation Access, a high-level framework of game theoretical risk based access control is proposed. Further, we present formulas for estimating the risk value of access request and user, construct and analyze the game model of the proposed access control by using a multi-stage two player game. There exists sub-game perfect Nash equilibrium each stage in the risk based access control and it's suitable to protect the privacy by limiting the privacy violation access requests.