Visible to the public Biblio

Filters: Keyword is operating systems (computers)  [Clear All Filters]
2021-04-09
Fadhilah, D., Marzuki, M. I..  2020.  Performance Analysis of IDS Snort and IDS Suricata with Many-Core Processor in Virtual Machines Against Dos/DDoS Attacks. 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP). :157—162.
The rapid development of technology makes it possible for a physical machine to be converted into a virtual machine, which can operate multiple operating systems that are running simultaneously and connected to the internet. DoS/DDoS attacks are cyber-attacks that can threaten the telecommunications sector because these attacks cause services to be disrupted and be difficult to access. There are several software tools for monitoring abnormal activities on the network, such as IDS Snort and IDS Suricata. From previous studies, IDS Suricata is superior to IDS Snort version 2 because IDS Suricata already supports multi-threading, while IDS Snort version 2 still only supports single-threading. This paper aims to conduct tests on IDS Snort version 3.0 which already supports multi-threading and IDS Suricata. This research was carried out on a virtual machine with 1 core, 2 core, and 4 core processor settings for CPU, memory, and capture packet attacks on IDS Snort version 3.0 and IDS Suricata. The attack scenario is divided into 2 parts: DoS attack scenario using 1 physical computer, and DDoS attack scenario using 5 physical computers. Based on overall testing, the results are: In general, IDS Snort version 3.0 is better than IDS Suricata. This is based on the results when using a maximum of 4 core processor, in which IDS Snort version 3.0 CPU usage is stable at 55% - 58%, a maximum memory of 3,000 MB, can detect DoS attacks with 27,034,751 packets, and DDoS attacks with 36,919,395 packets. Meanwhile, different results were obtained by IDS Suricata, in which CPU usage is better compared to IDS Snort version 3.0 with only 10% - 40% usage, and a maximum memory of 1,800 MB. However, the capabilities of detecting DoS attacks are smaller with 3,671,305 packets, and DDoS attacks with a total of 7,619,317 packets on a TCP Flood attack test.
2021-03-09
Muslim, A. A., Budiono, A., Almaarif, A..  2020.  Implementation and Analysis of USB based Password Stealer using PowerShell in Google Chrome and Mozilla Firefox. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :421—426.

Along with the development of the Windows operating system, browser applications to surf the internet are also growing rapidly. The most widely used browsers today are Google Chrome and Mozilla Firefox. Both browsers have a username and password management feature that makes users login to a website easily, but saving usernames and passwords in the browser is quite dangerous because the stored data can be hacked using brute force attacks or read through a program. One way to get a username and password in the browser is to use a program that can read Google Chrome and Mozilla Firefox login data from the computer's internal storage and then show those data. In this study, an attack will be carried out by implementing Rubber Ducky using BadUSB to run the ChromePass and PasswordFox program and the PowerShell script using the Arduino Pro Micro Leonardo device as a USB Password Stealer. The results obtained from this study are the username and password on Google Chrome and Mozilla Firefox successfully obtained when the USB is connected to the target device, the average time of the attack is 14 seconds then sending it to the author's email.

2021-03-04
Matin, I. Muhamad Malik, Rahardjo, B..  2020.  A Framework for Collecting and Analysis PE Malware Using Modern Honey Network (MHN). 2020 8th International Conference on Cyber and IT Service Management (CITSM). :1—5.

Nowadays, Windows is an operating system that is very popular among people, especially users who have limited knowledge of computers. But unconsciously, the security threat to the windows operating system is very high. Security threats can be in the form of illegal exploitation of the system. The most common attack is using malware. To determine the characteristics of malware using dynamic analysis techniques and static analysis is very dependent on the availability of malware samples. Honeypot is the most effective malware collection technique. But honeypot cannot determine the type of file format contained in malware. File format information is needed for the purpose of handling malware analysis that is focused on windows-based malware. For this reason, we propose a framework that can collect malware information as well as identify malware PE file type formats. In this study, we collected malware samples using a modern honey network. Next, we performed a feature extraction to determine the PE file format. Then, we classify types of malware using VirusTotal scanning. As the results of this study, we managed to get 1.222 malware samples. Out of 1.222 malware samples, we successfully extracted 945 PE malware. This study can help researchers in other research fields, such as machine learning and deep learning, for malware detection.

Ferryansa, Budiono, A., Almaarif, A..  2020.  Analysis of USB Based Spying Method Using Arduino and Metasploit Framework in Windows Operating System. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :437—442.

The use of a very wide windows operating system is undeniably also followed by increasing attacks on the operating system. Universal Serial Bus (USB) is one of the mechanisms used by many people with plug and play functionality that is very easy to use, making data transfers fast and easy compared to other hardware. Some research shows that the Windows operating system has weaknesses so that it is often exploited by using various attacks and malware. There are various methods used to exploit the Windows operating system, one of them by using a USB device. By using a USB device, a criminal can plant a backdoor reverse shell to exploit the victim's computer just by connecting the USB device to the victim's computer without being noticed. This research was conducted by planting a reverse shell backdoor through a USB device to exploit the victim's device, especially the webcam and microphone device on the target computer. From 35 experiments that have been carried out, it was found that 83% of spying attacks using USB devices on the Windows operating system were successfully carried out.

Widulinski, P., Wawryn, K..  2020.  A Human Immunity Inspired Intrusion Detection System to Search for Infections in an Operating System. 2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES). :187—191.

In the paper, an intrusion detection system to safeguard computer software is proposed. The detection is based on negative selection algorithm, inspired by the human immunity mechanism. It is composed of two stages, generation of receptors and anomaly detection. Experimental results of the proposed system are presented, analyzed, and concluded.

Moskvichev, A. D., Dolgachev, M. V..  2020.  System of Collection and Analysis Event Log from Sources under Control of Windows Operating System. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—5.

The purpose of this work is to implement a universal system for collecting and analyzing event logs from sources that use the Windows operating system. The authors use event-forwarding technology to collect data from logs. Security information and event management detects incidents from received events. The authors analyze existing methods for transmitting event log entries from sources running the Windows operating system. This article describes in detail how to connect event sources running on the Windows operating system to the event collector without connecting to a domain controller. Event sources are authenticated using certificates created by the event collector. The authors suggest a scheme for connecting the event collector to security information and event management. Security information and event management must meet the requirements for use in conjunction with event forwarding technology. The authors of the article demonstrate the scheme of the test stand and the result of testing the event forwarding technology.

2020-12-17
charan, S. S., karuppaiah, D..  2020.  Operating System Process Using Message Passing Concept in Military. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1—4.

In Robotics Operating System Process correspondence is the instrument given by the working framework that enables procedures to speak with one another Message passing model enables different procedures to peruse and compose information to the message line without being associated with one another, messages going between Robots. ROS is intended to be an inexactly coupled framework where a procedure is known as a hub and each hub ought to be answerable for one assignment. In the military application robots will go to go about as an officer and going ensure nation. In the referenced idea robot solider will give the message passing idea then the officers will go caution and start assaulting on the foes.

Hu, Z., Niu, J., Ren, T., Li, H., Rui, Y., Qiu, Y., Bai, L..  2020.  A Resource Management Model for Real-time Edge System of Multiple Robots. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :222—227.

Industrial robots are playing an important role in now a day industrial productions. However, due to the increasing in robot hardware modules and the rapid expansion of software modules, the reliability of operating systems for industrial robots is facing severe challenges, especially for the light-weight edge computing platforms. Based on current technologies on resource security isolation protection and access control, a novel resource management model for real-time edge system of multiple robot arms is proposed on light-weight edge devices. This novel resource management model can achieve the following functions: mission-critical resource classification, resource security access control, and multi-level security data isolation transmission. We also propose a fault location and isolation model on each lightweight edge device, which ensures the reliability of the entire system. Experimental results show that the robot operating system can meet the requirements of hierarchical management and resource access control. Compared with the existing methods, the fault location and isolation model can effectively locate and deal with the faults generated by the system.

Maram, S. S., Vishnoi, T., Pandey, S..  2019.  Neural Network and ROS based Threat Detection and Patrolling Assistance. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). :1—5.

To bring a uniform development platform which seamlessly combines hardware components and software architecture of various developers across the globe and reduce the complexity in producing robots which help people in their daily ergonomics. ROS has come out to be a game changer. It is disappointing to see the lack of penetration of technology in different verticals which involve protection, defense and security. By leveraging the power of ROS in the field of robotic automation and computer vision, this research will pave path for identification of suspicious activity with autonomously moving bots which run on ROS. The research paper proposes and validates a flow where ROS and computer vision algorithms like YOLO can fall in sync with each other to provide smarter and accurate methods for indoor and limited outdoor patrolling. Identification of age,`gender, weapons and other elements which can disturb public harmony will be an integral part of the research and development process. The simulation and testing reflects the efficiency and speed of the designed software architecture.

Mukhandi, M., Portugal, D., Pereira, S., Couceiro, M. S..  2019.  A novel solution for securing robot communications based on the MQTT protocol and ROS. 2019 IEEE/SICE International Symposium on System Integration (SII). :608—613.

With the growing use of the Robot Operating System (ROS), it can be argued that it has become a de-facto framework for developing robotic solutions. ROS is used to build robotic applications for industrial automation, home automation, medical and even automatic robotic surveillance. However, whenever ROS is utilized, security is one of the main concerns that needs to be addressed in order to ensure a secure network communication of robots. Cyber-attacks may hinder evolution and adaptation of most ROS-enabled robotic systems for real-world use over the Internet. Thus, it is important to address and prevent security threats associated with the use of ROS-enabled applications. In this paper, we propose a novel approach for securing ROS-enabled robotic system by integrating ROS with the Message Queuing Telemetry Transport (MQTT) protocol. We manage to secure robots' network communications by providing authentication and data encryption, therefore preventing man-in-the-middle and hijacking attacks. We also perform real-world experiments to assess how the performance of a ROS-enabled robotic surveillance system is affected by the proposed approach.

Rivera, S., Lagraa, S., State, R..  2019.  ROSploit: Cybersecurity Tool for ROS. 2019 Third IEEE International Conference on Robotic Computing (IRC). :415—416.

Robotic Operating System(ROS) security research is currently in a preliminary state, with limited research in tools or models. Considering the trend of digitization of robotic systems, this lack of foundational knowledge increases the potential threat posed by security vulnerabilities in ROS. In this article, we present a new tool to assist further security research in ROS, ROSploit. ROSploit is a modular two-pronged offensive tool covering both reconnaissance and exploitation of ROS systems, designed to assist researchers in testing exploits for ROS.

Sandoval, S., Thulasiraman, P..  2019.  Cyber Security Assessment of the Robot Operating System 2 for Aerial Networks. 2019 IEEE International Systems Conference (SysCon). :1—8.

The Robot Operating System (ROS) is a widely adopted standard robotic middleware. However, its preliminary design is devoid of any network security features. Military grade unmanned systems must be guarded against network threats. ROS 2 is built upon the Data Distribution Service (DDS) standard and is designed to provide solutions to identified ROS 1 security vulnerabilities by incorporating authentication, encryption, and process profile features, which rely on public key infrastructure. The Department of Defense is looking to use ROS 2 for its military-centric robotics platform. This paper seeks to demonstrate that ROS 2 and its DDS security architecture can serve as a functional platform for use in military grade unmanned systems, particularly in unmanned Naval aerial swarms. In this paper, we focus on the viability of ROS 2 to safeguard communications between swarms and a ground control station (GCS). We test ROS 2's ability to mitigate and withstand certain cyber threats, specifically that of rogue nodes injecting unauthorized data and accessing services that will disable parts of the UAV swarm. We use the Gazebo robotics simulator to target individual UAVs to ascertain the effectiveness of our attack vectors under specific conditions. We demonstrate the effectiveness of ROS 2 in mitigating the chosen attack vectors but observed a measurable operational delay within our simulations.

Basheer, M. M., Varol, A..  2019.  An Overview of Robot Operating System Forensics. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1—4.
Autonomous technologies have been rapidly replacing the traditional manual intervention nearly in every aspect of our life. These technologies essentially require robots to carry out their automated processes. Nowadays, with the emergence of industry 4.0, robots are increasingly being remote-controlled via client-server connection, which creates uncommon vulnerabilities that allow attackers to target those robots. The development of an open source operational environment for robots, known as Robot Operating System (ROS) has come as a response to these demands. Security and privacy are crucial for the use of ROS as the chance of a compromise may lead to devastating ramifications. In this paper, an overview of ROS and the attacks targeting it are detailed and discussed. Followed by a review of the ROS security and digital investigation studies.
2020-12-15
Staffa, M., Mazzeo, G., Sgaglione, L..  2018.  Hardening ROS via Hardware-assisted Trusted Execution Environment. 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :491—494.

In recent years, humanoid robots have become quite ubiquitous finding wide applicability in many different fields, spanning from education to entertainment and assistance. They can be considered as more complex cyber-physical systems (CPS) and, as such, they are exposed to the same vulnerabilities. This can be very dangerous for people acting that close with these robots, since attackers by exploiting their vulnerabilities, can not only violate people's privacy, but, more importantly, they can command the robot behavior causing them bodily harm, thus leading to devastating consequences. In this paper, we propose a solution not yet investigated in this field, which relies on the use of secure enclaves, which in our opinion could represent a valuable solution for coping with most of the possible attacks, while suggesting developers to adopt such a precaution during the robot design phase.

Xu, Z., Zhu, Q..  2018.  Cross-Layer Secure and Resilient Control of Delay-Sensitive Networked Robot Operating Systems. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1712—1717.

A Robot Operating System (ROS) plays a significant role in organizing industrial robots for manufacturing. With an increasing number of the robots, the operators integrate a ROS with networked communication to share the data. This cyber-physical nature exposes the ROS to cyber attacks. To this end, this paper proposes a cross-layer approach to achieve secure and resilient control of a ROS. In the physical layer, due to the delay caused by the security mechanism, we design a time-delay controller for the ROS agent. In the cyber layer, we define cyber states and use Markov Decision Process to evaluate the tradeoffs between physical and security performance. Due to the uncertainty of the cyber state, we extend the MDP to a Partially Observed Markov Decision Process (POMDP). We propose a threshold solution based on our theoretical results. Finally, we present numerical examples to evaluate the performance of the secure and resilient mechanism.

2020-12-02
Islam, S., Welzl, M., Gjessing, S..  2019.  How to Control a TCP: Minimally-Invasive Congestion Management for Datacenters. 2019 International Conference on Computing, Networking and Communications (ICNC). :121—125.

In multi-tenant datacenters, the hardware may be homogeneous but the traffic often is not. For instance, customers who pay an equal amount of money can get an unequal share of the bottleneck capacity when they do not open the same number of TCP connections. To address this problem, several recent proposals try to manipulate the traffic that TCP sends from the VMs. VCC and AC/DC are two new mechanisms that let the hypervisor control traffic by influencing the TCP receiver window (rwnd). This avoids changing the guest OS, but has limitations (it is not possible to make TCP increase its rate faster than it normally would). Seawall, on the other hand, completely rewrites TCP's congestion control, achieving fairness but requiring significant changes to both the hypervisor and the guest OS. There seems to be a need for a middle ground: a method to control TCP's sending rate without requiring a complete redesign of its congestion control. We introduce a minimally-invasive solution that is flexible enough to cater for needs ranging from weighted fairness in multi-tenant datacenters to potentially offering Internet-wide benefits from reduced interflow competition.

2020-11-17
Singh, M., Butakov, S., Jaafar, F..  2018.  Analyzing Overhead from Security and Administrative Functions in Virtual Environment. 2018 International Conference on Platform Technology and Service (PlatCon). :1—6.
The paper provides an analysis of the performance of an administrative component that helps the hypervisor to manage the resources of guest operating systems under fluctuation workload. The additional administrative component provides an extra layer of security to the guest operating systems and system as a whole. In this study, an administrative component was implemented by using Xen-hypervisor based para-virtualization technique and assigned some additional roles and responsibilities that reduce hypervisor workload. The study measured the resource utilizations of an administrative component when excessive input/output load passes passing through the system. Performance was measured in terms of bandwidth and CPU utilisation Based on the analysis of administrative component performance recommendations have been provided with the goal to improve system availability. Recommendations included detection of the performance saturation point that indicates the necessity to start load balancing procedures for the administrative component in the virtualized environment.
Maksutov, A. A., Dmitriev, S. O., Lysenkov, V. I., Valter, D. A..  2018.  Mobile bootloader with security features. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :335—338.
Modern mobile operating systems store a lot of excessive information that can be used against its owner or organization, like a call history or various system logs. This article describes a universal way of preventing any mobile operating system or application from saving its data in device's internal storage without reducing their functionality. The goal of this work is creation of a software that solves the described problem and works on the bootloading stage. A general algorithm of the designed software, along with its main solutions and requirements, is presented in this paper. Hardware requirement, software testing results and general applications of this software are also listed in this paper.
Benhani, E. M., Bossuet, L..  2018.  DVFS as a Security Failure of TrustZone-enabled Heterogeneous SoC. 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :489—492.
Today, most embedded systems use Dynamic Voltage and Frequency Scaling (DVFS) to minimize energy consumption and maximize performance. The DVFS technique works by regulating the important parameters that govern the amount of energy consumed in a system, voltage and frequency. For the implementation of this technique, the operating system (OS) includes software applications that dynamically control a voltage regulator or a frequency regulator or both. In this paper, we demonstrate for the first time a malicious use of the frequency regulator against a TrustZone-enabled System-on-Chip (SoC). We demonstrate a use of frequency scaling to create covert channel in a TrustZone-enabled heterogeneous SoC. We present four proofs of concept to transfer sensitive data from a secure entity in the SoC to a non-secure one. The first proof of concept is from a secure ARM core to outside of SoC. The second is from a secure ARM core to a non-secure one. The third is from a non-trusted third party IP embedded in the programmable logic part of the SoC to a non-secure ARM core. And the last proof of concept is from a secure third party IP to a non-secure ARM core.
2020-11-16
Huyck, P..  2019.  Safe and Secure Data Fusion — Use of MILS Multicore Architecture to Reduce Cyber Threats. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). :1–9.
Data fusion, as a means to improve aircraft and air traffic safety, is a recent focus of some researchers and system developers. Increases in data volume and processing needs necessitate more powerful hardware and more flexible software architectures to satisfy these needs. Such improvements in processed data also mean the overall system becomes more complex and correspondingly, resulting in a potentially significantly larger cyber-attack space. Today's multicore processors are one means of satisfying the increased computational needs of data fusion-based systems. When coupled with a real-time operating system (RTOS) capable of flexible core and application scheduling, large cabinets of (power hungry) single-core processors may be avoided. The functional and assurance capabilities of such an RTOS can be critical elements in providing application isolation, constrained data flows, and restricted hardware access (including covert channel prevention) necessary to reduce the overall cyber-attack space. This paper examines fundamental considerations of a multiple independent levels of security (MILS) architecture when supported by a multicore-based real-time operating system. The paper draws upon assurance activities and functional properties associated with a previous Common Criteria evaluation assurance level (EAL) 6+ / High-Robustness Separation Kernel certification effort and contrast those with activities performed as part of a MILS multicore related project. The paper discusses key characteristics and functional capabilities necessary to achieve overall system security and safety. The paper defines architectural considerations essential for scheduling applications on a multicore processor to reduce security risks. For civil aircraft systems, the paper discusses the applicability of the security assurance and architecture configurations to system providers looking to increase their resilience to cyber threats.
2020-11-02
Fraile, Francisco, Flores, José Luis, Anaya, Victor, Saiz, Eduardo, Poler, Raúl.  2018.  A Scaffolding Design Framework for Developing Secure Interoperability Components in Digital Manufacturing Platforms. 2018 International Conference on Intelligent Systems (IS). :564—569.
This paper presents the Virtual Open Operating System (vf-OS) Input / Output (IO) Toolkit Generator, which is a design tool to develop vf-OS IO components that interact with all kinds of manufacturing assets, either physical devices like Program Logic Controllers (PLCs), software applications like Enterprise Resource Planning Systems (ERPs) or legacy file formats like STEP. The vf-OS IO Toolkit Generator is based on software scaffolding, a code generation technique that allows a developer to create a working component to interact with a manufacturing asset from the vf-OS Platform without writing a line of code. As described in this paper, software scaffolding not only simplifies the development of interoperability components, but it also fosters system security and platform integration automation. Another contribution of this paper is to propose possible integrations between the IO Toolkit Generator and the vf-OS Security Command Centre in charge of platform security. Additionally, this paper describes how the concept can be extended to address other digital manufacturing platforms like Fi-Ware.
2020-10-30
Jeong, Yeonjeong, Kim, Jinmee, Jeon, Seunghyub, Cha, Seung-Jun, Ramneek, Jung, Sungin.  2019.  Design and Implementation of Azalea unikernel file IO offload. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :398—401.

{Unikernel is smaller in size than existing operating systems and can be started and shut down much more quickly and safely, resulting in greater flexibility and security. Since unikernel does not include large modules like the file system in its library to reduce its size, it is common to choose offloading to handle file IO. However, the processing of IO offload of unikernel transfers the file IO command to the proxy of the file server and copies the file IO result of the proxy. This can result in a trade-off of rapid processing, an advantage of unikernel. In this paper, we propose a method to offload file IO and to perform file IO with direct copy from file server to unikernel}.

2020-09-11
Eskandarian, Saba, Cogan, Jonathan, Birnbaum, Sawyer, Brandon, Peh Chang Wei, Franke, Dillon, Fraser, Forest, Garcia, Gaspar, Gong, Eric, Nguyen, Hung T., Sethi, Taresh K. et al..  2019.  Fidelius: Protecting User Secrets from Compromised Browsers. 2019 IEEE Symposium on Security and Privacy (SP). :264—280.
Users regularly enter sensitive data, such as passwords, credit card numbers, or tax information, into the browser window. While modern browsers provide powerful client-side privacy measures to protect this data, none of these defenses prevent a browser compromised by malware from stealing it. In this work, we present Fidelius, a new architecture that uses trusted hardware enclaves integrated into the browser to enable protection of user secrets during web browsing sessions, even if the entire underlying browser and OS are fully controlled by a malicious attacker. Fidelius solves many challenges involved in providing protection for browsers in a fully malicious environment, offering support for integrity and privacy for form data, JavaScript execution, XMLHttpRequests, and protected web storage, while minimizing the TCB. Moreover, interactions between the enclave and the browser, the keyboard, and the display all require new protocols, each with their own security considerations. Finally, Fidelius takes into account UI considerations to ensure a consistent and simple interface for both developers and users. As part of this project, we develop the first open source system that provides a trusted path from input and output peripherals to a hardware enclave with no reliance on additional hypervisor security assumptions. These components may be of independent interest and useful to future projects. We implement and evaluate Fidelius to measure its performance overhead, finding that Fidelius imposes acceptable overhead on page load and user interaction for secured pages and has no impact on pages and page components that do not use its enhanced security features.
2020-09-08
Mavridis, Ilias, Karatza, Helen.  2019.  Lightweight Virtualization Approaches for Software-Defined Systems and Cloud Computing: An Evaluation of Unikernels and Containers. 2019 Sixth International Conference on Software Defined Systems (SDS). :171–178.
Software defined systems use virtualization technologies to provide an abstraction of the hardware infrastructure at different layers. Ultimately, the adoption of software defined systems in all cloud infrastructure components will lead to Software Defined Cloud Computing. Nevertheless, virtualization has already been used for years and is a key element of cloud computing. Traditionally, virtual machines are deployed in cloud infrastructure and used to execute applications on common operating systems. New lightweight virtualization technologies, such as containers and unikernels, appeared later to improve resource efficiency and facilitate the decomposition of big monolithic applications into multiple, smaller services. In this work, we present and empirically evaluate four popular unikernel technologies, Docker containers and Docker LinuxKit. We deployed containers both on bare metal and on virtual machines. To fairly evaluate their performance, we created similar applications for unikernels and containers. Additionally, we deployed full-fledged database applications ported on both virtualization technologies. Although in bibliography there are a few studies which compare unikernels and containers, in our study for the first time, we provide a comprehensive performance evaluation of clean-slate and legacy unikernels, Docker containers and Docker LinuxKit.
2020-09-04
Tian, Dave Jing, Hernandez, Grant, Choi, Joseph I., Frost, Vanessa, Johnson, Peter C., Butler, Kevin R. B..  2019.  LBM: A Security Framework for Peripherals within the Linux Kernel. 2019 IEEE Symposium on Security and Privacy (SP). :967—984.

Modern computer peripherals are diverse in their capabilities and functionality, ranging from keyboards and printers to smartphones and external GPUs. In recent years, peripherals increasingly connect over a small number of standardized communication protocols, including USB, Bluetooth, and NFC. The host operating system is responsible for managing these devices; however, malicious peripherals can request additional functionality from the OS resulting in system compromise, or can craft data packets to exploit vulnerabilities within OS software stacks. Defenses against malicious peripherals to date only partially cover the peripheral attack surface and are limited to specific protocols (e.g., USB). In this paper, we propose Linux (e)BPF Modules (LBM), a general security framework that provides a unified API for enforcing protection against malicious peripherals within the Linux kernel. LBM leverages the eBPF packet filtering mechanism for performance and extensibility and we provide a high-level language to facilitate the development of powerful filtering functionality. We demonstrate how LBM can provide host protection against malicious USB, Bluetooth, and NFC devices; we also instantiate and unify existing defenses under the LBM framework. Our evaluation shows that the overhead introduced by LBM is within 1 μs per packet in most cases, application and system overhead is negligible, and LBM outperforms other state-of-the-art solutions. To our knowledge, LBM is the first security framework designed to provide comprehensive protection against malicious peripherals within the Linux kernel.