Biblio
Advances in technology have led not only to increased security and privacy but also to new channels of information leakage. New leak channels have resulted in the emergence of increased relevance of various types of attacks. One such attacks are Side-Channel Attacks, i.e. attacks aimed to find vulnerabilities in the practical component of the algorithm. However, with the development of these types of attacks, methods of protection against them have also appeared. One of such methods is White-Box Cryptography.
Multipath fading as well as shadowing is liable for the leakage of confidential information from the wireless channels. In this paper a solution to this information leakage is proposed, where a source transmits signal through a α-μ/α-μ composite fading channel considering an eavesdropper is present in the system. Secrecy enhancement is investigated with the help of two fading parameters α and μ. To mitigate the impacts of shadowing a α-μ distribution is considered whose mean is another α-μ distribution which helps to moderate the effects multipath fading. The mathematical expressions of some secrecy matrices such as the probability of non-zero secrecy capacity and the secure outage probability are obtained in closed-form to analyze security of the wireless channel in light of the channel parameters. Finally, Monte-Carlo simulations are provided to justify the correctness of the derived expressions.
It can get the user's privacy and home energy use information by analyzing the user's electrical load information in smart grid, and this is an area of concern. A rechargeable battery may be used in the home network to protect user's privacy. In this paper, the battery can neither charge nor discharge, and the power of battery is adjustable, at the same time, we model the real user's electrical load information and the battery power information and the recorded electrical power of smart meters which are processed with discrete way. Then we put forward a heuristic algorithm which can make the rate of information leakage less than existing solutions. We use statistical methods to protect user's privacy, the theoretical analysis and the examples show that our solution makes the scene design more reasonable and is more effective than existing solutions to avoid the leakage of the privacy.
Oblivious RAM is a cryptographic primitive that embodies one of the cornerstones of privacy-preserving technologies for database protection. While any Oblivious RAM (ORAM) construction offers access pattern hiding, there does not seem to be a construction that is safe against the potential leakage due to knowledge about the number of accesses performed by a client. Such leakage constitutes a privacy violation, as client data may be stored in a domain specific fashion. In this work, we examine this leakage by considering an adversary that can probe the server that stores an ORAM database, and who takes regular snapshots of it. We show that even against such a weak adversary, no major ORAM architecture is resilient, except for the trivial case, where the client scans the whole database in order to access a single element. In fact, we argue that constructing a non-trivial ORAM that is formally resilient seems impossible. Moreover, we quantify the leakage of different constructions to show which architecture offers the best privacy in practice.
Covert channels are used to hidden transmit information and violate the security policy. What is more it is possible to construct covert channel in such manner that protection system is not able to detect it. IP timing covert channels are objects for research in the article. The focus of the paper is the research of how one can counteract an information leakage by dummy traffic generation. The covert channel capacity formula has been obtained in case of counteraction. In conclusion, the examples of counteraction tool parameter calculation are given.
Infrastructure-as-a-Service clouds provide out-of-band remote management for users to access their virtual machines (VMs). Out-of-band remote management is a method for indirectly accessing VMs via their virtual devices. While virtual devices running in the virtualized system are managed by cloud operators, not all cloud operators are always trusted in clouds. To prevent information leakage from virtual devices and tampering with their I/O data, several systems have been proposed by trusting the hypervisor in the virtualized system. However, they have various issues on security and management. This paper proposes VSBypass, which enables secure out-of-band remote management outside the virtualized system using a technique called transparent passthrough. VSBypass runs the entire virtualized system in an outer VM using nested virtualization. Then it intercepts I/O requests of out-of-band remote management and processes those requests in shadow devices, which run outside the virtualized system. We have implemented VSBypass in Xen for the virtual serial console and GUI remote access. We confirmed that information leakage was prevented and that the performance was comparable to that in traditional out-of-band remote management.
With the increasing popularity of augmented reality (AR) services, providing seamless human-computer interactions in the AR setting has received notable attention in the industry. Gesture control devices have recently emerged to be the next great gadgets for AR due to their unique ability to enable computer interaction with day-to-day gestures. While these AR devices are bringing revolutions to our interaction with the cyber world, it is also important to consider potential privacy leakages from these always-on wearable devices. Specifically, the coarse access control on current AR systems could lead to possible abuse of sensor data. Although the always-on gesture sensors are frequently quoted as a privacy concern, there has not been any study on information leakage of these devices. In this article, we present our study on side-channel information leakage of the most popular gesture control device, Myo. Using signals recorded from the electromyography (EMG) sensor and accelerometers on Myo, we can recover sensitive information such as passwords typed on a keyboard and PIN sequence entered through a touchscreen. EMG signal records subtle electric currents of muscle contractions. We design novel algorithms based on dynamic cumulative sum and wavelet transform to determine the exact time of finger movements. Furthermore, we adopt the Hudgins feature set in a support vector machine to classify recorded signal segments into individual fingers or numbers. We also apply coordinate transformation techniques to recover fine-grained spatial information with low-fidelity outputs from the sensor in keystroke recovery. We evaluated the information leakage using data collected from a group of volunteers. Our results show that there is severe privacy leakage from these commodity wearable sensors. Our system recovers complex passwords constructed with lowercase letters, uppercase letters, numbers, and symbols with a mean success rate of 91%.
Hardware implementations of cryptographic algorithms may leak information through numerous side channels, which can be used to reveal the secret cryptographic keys, and therefore compromise the security of the algorithm. Power Analysis Attacks (PAAs) [1] exploit the information leakage from the device's power consumption (typically measured on the supply and/or ground pins). Digital circuits consume dynamic switching energy when data propagate through the logic in each new calculation (e.g. new clock cycle). The average power dissipation of a design can be expressed by: Ptot(t) = α · (Pd(t) + Ppvt(t)) (1) where α is the activity factor (the probability that the gate will switch) and depends on the probability distribution of the inputs to the combinatorial logic. This induces a linear relationship between the power and the processed data [2]. Pd is the deterministic power dissipated by the switching of the gate, including any parasitic and intrinsic capacitances, and hence can be evaluated prior to manufacturing. Ppvt is the change in expected power consumption due to nondeterministic parameters such as process variations, mismatch, temperature, etc. In this manuscript, we describe the design of logic gates that induce data-independent (constant) α and Pd.
Redundant capacity in filesystem timestamps is recently proposed in the literature as an effective means for information hiding and data leakage. Here, we evaluate the steganographic capabilities of such channels and propose techniques to aid digital forensics investigation towards identifying and detecting manipulated filesystem timestamps. Our findings indicate that different storage media and interfaces exhibit different timestamp creation patterns. Such differences can be utilized to characterize file source media and increase the analysis capabilities of the incident response process.
Promoting data sharing between organisations is challenging, without the added concerns over having actions traced. Even with encrypted search capabilities, the entities digital location and downloaded information can be traced, leaking information to the hosting organisation. This is a problem for law enforcement and government agencies, where any information leakage is not acceptable, especially for investigations. Anonymous routing is a technique to stop a host learning which agency is accessing information. Many related works for anonymous routing have been proposed, but are designed for Internet traffic, and are over complicated for internal usage. A streaming design for circuit creation is proposed using elliptic curve cryptography. Allowing for a simple anonymous routing solution, which provides fast performance with source and destination anonymity to other organisations.
This work deals with key generation based on Physically Obfuscated Keys (POKs), i.e., a certain type of tamper-evident Physical Unclonable Function (PUF) that can be used as protection against invasive physical attacks. To design a protected device, one must take attacks such as probing of data lines or penetration of the physical security boundary into consideration. For the implementation of a POK as a countermeasure, physical properties of a material – which covers all parts to be protected – are measured. After measuring these properties, i.e. analog values, they have to be quantized in order to derive a cryptographic key. This paper will present and discuss the impact of the quantization method with regard to three parameters: key quality, tamper-sensitivity, and reliability. Our contribution is the analysis of two different quantization schemes considering these parameters. Foremost, we propose a new approach to achieve improved tamper-sensitivity in the worst-case with no information leakage. We then analyze a previous solution and compare it to our scenario. Based on empirical data we demonstrate the advantages of our approach. This significantly improves the level of protection of a tamper-resistant cryptographic device compared to cases not benefiting from our scheme.