Biblio
The main issues with drug safety in the counterfeit medicine supply chain, are to do with how the drugs are initially manufactured. The traceability of right and active pharmaceutical ingredients during actual manufacture is a difficult process, so detecting drugs that do not contain the intended active ingredients can ultimately lead to end-consumer patient harm or even death. Blockchain's advanced features make it capable of providing a basis for complete traceability of drugs, from manufacturer to end consumer, and the ability to identify counterfeit-drug. This paper aims to address the issue of drug safety using Blockchain and encrypted QR(quick response) code security.
Robots are sophisticated form of IoT devices as they are smart devices that scrutinize sensor data from multiple sources and observe events to decide the best procedural actions to supervise and manoeuvre objects in the physical world. In this paper, localization of the robot is addressed by QR code Detection and path optimization is accomplished by Dijkstras algorithm. The robot can navigate automatically in its environment with sensors and shortest path is computed whenever heading measurements are updated with QR code landmark recognition. The proposed approach highly reduces computational burden and deployment complexity as it reflects the use of artificial intelligence to self-correct its course when required. An Encrypted communication channel is established over wireless local area network using SSHv2 protocol to transfer or receive sensor data(or commands) making it an IoT enabled Robot.
In this paper, we propose a novel visual secret sharing (VSS) scheme for color QR code (VSSCQR) with (n, n) threshold based on high capacity, admirable visual effects and popularity of color QR code. By splitting and encoding a secret image into QR codes and then fusing QR codes to generate color QR code shares, the scheme can share the secret among a certain number of participants. However, less than n participants cannot reveal any information about the secret. The embedding amount and position of the secret image bits generated by VSS are in the range of the error correction ability of the QR code. Each color share is readable, which can be decoded and thus may not come into notice. On one hand, the secret image can be reconstructed by first decomposing three QR codes from each color QR code share and then stacking the corresponding QR codes based on only human visual system without computational devices. On the other hand, by decomposing three QR codes from each color QR code share and then XORing the three QR codes respectively, we can reconstruct the secret image losslessly. The experiment results display the effect of our scheme.
The main objective of this research work is to enhance the data storage capacity of the QR codes. By achieving the research aim, we can visualize rapid increase in application domains of QR Codes, mostly for smart cities where one needs to store bulk amount of data. Nowadays India is experiencing demonetization step taken by Prime Minister of the country and QR codes can play major role for this step. They are also helpful for cashless society as many vendors have registered themselves with different e-wallet companies like paytm, freecharge etc. These e-wallet companies have installed QR codes at cash counter of such vendors. Any time when a customer wants to pay his bills, he only needs to scan that particular QR code. Afterwards the QR code decoder application start working by taking necessary action like opening payment gateway etc. So, objective of this research study focuses on solving this issue by applying proposed methodology.
The barcode is an important link between real life and the virtual world nowadays. One of the most common barcodes is QR code, which its appearance, black and white modules, is not visually pleasing. The QR code is applied to product packaging and campaign promotion in the market. There are more and more stores using QR code for transaction payment. If the QR code is altered or illegally duplicated, it will endanger the information security of users. Therefore, the study uses infrared watermarking to embed the infrared QR code information into the explicit QR code to strengthen the anti-counterfeiting features. The explicit graphic QR code is produced by data hiding with error diffusion in this study. With the optical characteristics of K, one of the four printed ink colors CMYK (Cyan, Magenta, Yellow, Black), only K can be rendered in infrared. Hence, we use the infrared watermarking to embed the implicit QR code information into the explicit graphic QR code. General QR code reader may be used to interpret explicit graphic QR code information. As for implicit QR code, it needs the infrared detector to extract its implicit QR code information. If the QR code is illegally copied, it will not show the hidden second QR code under infrared detection. In this study, infrared watermark hidden in the graphic QR code can enhance not only the aesthetics of QR code, but also the anti-counterfeiting feature. It can also be applied to printing related fields, such as security documents, banknotes, etc. in the future.
Quick Response (QR) codes are rapidly becoming pervasive in our daily life because of its fast readability and the popularity of smartphones with a built-in camera. However, recent researches raise security concerns because QR codes can be easily sniffed and decoded which can lead to private information leakage or financial loss. To address the issue, we present mQRCode which exploit patterns with specific spatial frequency to camouflage QR codes. When the targeted receiver put a camera at the designated position (e.g., 30cm and 0° above the camouflaged QR code), the original QR code is revealed due to the Moiré phenomenon. Malicious adversaries will only see camouflaged QR code at any other position. Our experiments show that the decoding rate of mQR codes is 95% or above within 0.83 seconds. When the camera is 10cm or 15° away from the designated location, the decoding rate drops to 0 so it's secure from attackers.
Transform based image steganography methods are commonly used in security applications. However, the application of several recent transforms for image steganography remains unexplored. This paper presents bit-plane based steganography method using different transforms. In this work, the bit-plane of the transform coefficients is selected to embed the secret message. The characteristics of four transforms used in the steganography have been analyzed and the results of the four transforms are compared. This has been proven in the experimental results.
With the advent of QR readers and mobile phones the use of graphical codes like QR codes and data matrix code has become very popular. Despite the noise like appearance, it has the advantage of high data capacity, damage resistance and fast decoding robustness. The proposed system embeds the image chosen by the user to develop visually appealing QR codes with improved decoding robustness using BCH algorithm. The QR information bits are encoded into luminance value of the input image. The developed Picode can inspire perceptivity in multimedia applications and can ensure data security for instances like online payments. The system is implemented on Matlab and ARM cortex A8.
In smart factories and smart homes, devices such as smart sensors are connected to the Internet. Independent of the context in which such a smart sensor is deployed, the possibility to change its configuration parameters in a secure way is essential. Existing solutions do provide only minimal security or do not allow to transfer arbitrary configuration data. In this paper, we present an NFC- and QR-code based configuration interface for smart sensors which improves the security and practicability of the configuration altering process while introducing as little overhead as possible. We present a protocol for configuration as well as a hardware extension including a dedicated security controller (SC) for smart sensors. For customers, no additional hardware other than a commercially available smartphone will be necessary which makes the proposed approach highly applicable for smart factory and smart home contexts alike.
In this paper, we explore the usage of printed tags to authenticate products. Printed tags are a cheap alternative to RFID and other tag based systems and do not require specialized equipment. Due to the simplistic nature of such printed codes, many security issues like tag impersonation, server impersonation, reader impersonation, replay attacks and denial of service present in RFID based solutions need to be handled differently. We propose a cost-efficient scheme based on static tag based hash chains to address these security threats. We analyze the security characteristics of this scheme and compare it to other product authentication schemes that use RFID tags. Finally, we show that our proposed statically printed QR codes can be at least as secure as RFID tags.