Biblio
With the proliferation of data in Internet-related applications, incidences of cyber security have increased manyfold. Energy management, which is one of the smart city layers, has also been experiencing cyberattacks. Furthermore, the Distributed Energy Resources (DER), which depend on different controllers to provide energy to the main physical smart grid of a smart city, is prone to cyberattacks. The increased cyber-attacks on DER systems are mainly because of its dependency on digital communication and controls as there is an increase in the number of devices owned and controlled by consumers and third parties. This paper analyzes the major cyber security and privacy challenges that might inflict, damage or compromise the DER and related controllers in smart cities. These challenges highlight that the security and privacy on the Internet of Things (IoT), big data, artificial intelligence, and smart grid, which are the building blocks of a smart city, must be addressed in the DER sector. It is observed that the security and privacy challenges in smart cities can be solved through the distributed framework, by identifying and classifying stakeholders, using appropriate model, and by incorporating fault-tolerance techniques.
Among the different types of malware, botnets are rising as the most genuine risk against cybersecurity as they give a stage to criminal operations (e.g., Distributed Denial of Service (DDOS) attacks, malware dispersal, phishing, and click fraud and identity theft). Existing botnet detection techniques work only on specific botnet Command and Control (C&C) protocols and lack in providing early-stage botnet detection. In this paper, we propose an approach for early-stage botnet detection. The proposed approach first selects the optimal features using feature selection techniques. Next, it feeds these features to machine learning classifiers to evaluate the performance of the botnet detection. Experiments reveals that the proposed approach efficiently classifies normal and malicious traffic at an early stage. The proposed approach achieves the accuracy of 99%, True Positive Rate (TPR) of 0.99 %, and False Positive Rate (FPR) of 0.007 % and provide an efficient detection rate in comparison with the existing approach.
With the rapid progression of Information and Communication Technology (ICT) and especially of Internet of Things (IoT), the conventional electrical grid is transformed into a new intelligent paradigm, known as Smart Grid (SG). SG provides significant benefits both for utility companies and energy consumers such as the two-way communication (both electricity and information), distributed generation, remote monitoring, self-healing and pervasive control. However, at the same time, this dependence introduces new security challenges, since SG inherits the vulnerabilities of multiple heterogeneous, co-existing legacy and smart technologies, such as IoT and Industrial Control Systems (ICS). An effective countermeasure against the various cyberthreats in SG is the Intrusion Detection System (IDS), informing the operator timely about the possible cyberattacks and anomalies. In this paper, we provide an anomaly-based IDS especially designed for SG utilising operational data from a real power plant. In particular, many machine learning and deep learning models were deployed, introducing novel parameters and feature representations in a comparative study. The evaluation analysis demonstrated the efficacy of the proposed IDS and the improvement due to the suggested complex data representation.
One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain's distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.
To add more functionality and enhance usability of web applications, JavaScript (JS) is frequently used. Even with many advantages and usefulness of JS, an annoying fact is that many recent cyberattacks such as drive-by-download attacks exploit vulnerability of JS codes. In general, malicious JS codes are not easy to detect, because they sneakily exploit vulnerabilities of browsers and plugin software, and attack visitors of a web site unknowingly. To protect users from such threads, the development of an accurate detection system for malicious JS is soliciting. Conventional approaches often employ signature and heuristic-based methods, which are prone to suffer from zero-day attacks, i.e., causing many false negatives and/or false positives. For this problem, this paper adopts a machine-learning approach to feature learning called Doc2Vec, which is a neural network model that can learn context information of texts. The extracted features are given to a classifier model (e.g., SVM and neural networks) and it judges the maliciousness of a JS code. In the performance evaluation, we use the D3M Dataset (Drive-by-Download Data by Marionette) for malicious JS codes and JSUPACK for benign ones for both training and test purposes. We then compare the performance to other feature learning methods. Our experimental results show that the proposed Doc2Vec features provide better accuracy and fast classification in malicious JS code detection compared to conventional approaches.
The work proposes and justifies a processing algorithm of computer security incidents based on the author's signatures of cyberattacks. Attention is also paid to the design pattern SOPKA based on the Russian ViPNet technology. Recommendations are made regarding the establishment of the corporate segment SOPKA, which meets the requirements of Presidential Decree of January 15, 2013 number 31c “On the establishment of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” and “Concept of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” approved by the President of the Russian Federation on December 12, 2014, No K 1274.
As the use of wireless technologies increases significantly due to ease of deployment, cost-effectiveness and the increase in bandwidth, there is a critical need to make the wireless communications secure, and resilient to attacks or faults (malicious or natural). Wireless communications are inherently prone to cyberattacks due to the open access to the medium. While current wireless protocols have addressed the privacy issues, they have failed to provide effective solutions against denial of service attacks, session hijacking and jamming attacks. In this paper, we present a resilient wireless communication architecture based on Moving Target Defense, and Software Defined Radios (SDRs). The approach achieves its resilient operations by randomly changing the runtime characteristics of the wireless communications channels between different wireless nodes to make it extremely difficult to succeed in launching attacks. The runtime characteristics that can be changed include packet size, network address, modulation type, and the operating frequency of the channel. In addition, the lifespan for each configuration will be random. To reduce the overhead in switching between two consecutive configurations, we use two radio channels that are selected at random from a finite set of potential channels, one will be designated as an active channel while the second acts as a standby channel. This will harden the wireless communications attacks because the attackers have no clue on what channels are currently being used to exploit existing vulnerability and launch an attack. The experimental results and evaluation show that our approach can tolerate a wide range of attacks (Jamming, DOS and session attacks) against wireless networks.
Taiwan has become the frontline in an emerging cyberspace battle. Cyberattacks from different countries are constantly reported during past decades. The incident of Advanced Persistent Threat (APT) is analyzed from the golden triangle components (people, process and technology) to ensure the application of digital forensics. This study presents a novel People-Process-Technology-Strategy (PPTS) model by implementing a triage investigative step to identify evidence dynamics in digital data and essential information in auditing logs. The result of this study is expected to improve APT investigation. The investigation scenario of this proposed methodology is illustrated by applying to some APT incidents in Taiwan.
Taiwan has become the frontline in an emerging cyberspace battle. Cyberattacks from different countries are constantly reported during past decades. The incident of Advanced Persistent Threat (APT) is analyzed from the golden triangle components (people, process and technology) to ensure the application of digital forensics. This study presents a novel People-Process-Technology-Strategy (PPTS) model by implementing a triage investigative step to identify evidence dynamics in digital data and essential information in auditing logs. The result of this study is expected to improve APT investigation. The investigation scenario of this proposed methodology is illustrated by applying to some APT incidents in Taiwan.