Visible to the public Biblio

Filters: Keyword is network theory (graphs)  [Clear All Filters]
2021-06-01
Gu, Yanyang, Zhang, Ping, Chen, Zhifeng, Cao, Fei.  2020.  UEFI Trusted Computing Vulnerability Analysis Based on State Transition Graph. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1043–1052.
In the face of increasingly serious firmware attacks, it is of great significance to analyze the vulnerability security of UEFI. This paper first introduces the commonly used trusted authentication mechanisms of UEFI. Then, aiming at the loopholes in the process of UEFI trust verification in the startup phase, combined with the state transition diagram, PageRank algorithm and Bayesian network theory, the analysis model of UEFI trust verification startup vulnerability is constructed. And according to the example to verify the analysis. Through the verification and analysis of the data obtained, the vulnerable attack paths and key vulnerable nodes are found. Finally, according to the analysis results, security enhancement measures for UEFI are proposed.
2021-02-23
Xia, H., Gao, N., Peng, J., Mo, J., Wang, J..  2020.  Binarized Attributed Network Embedding via Neural Networks. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Traditional attributed network embedding methods are designed to map structural and attribute information of networks jointly into a continuous Euclidean space, while recently a novel branch of them named binarized attributed network embedding has emerged to learn binary codes in Hamming space, aiming to save time and memory costs and to naturally fit node retrieval task. However, current binarized attributed network embedding methods are scarce and mostly ignore the local attribute similarity between each pair of nodes. Besides, none of them attempt to control the independency of each dimension(bit) of the learned binary representation vectors. As existing methods still need improving, we propose an unsupervised Neural-based Binarized Attributed Network Embedding (NBANE) approach. Firstly, we inherit the Weisfeiler-Lehman proximity matrix from predecessors to aggregate high-order features for each node. Secondly, we feed the aggregated features into an autoencoder with the attribute similarity penalizing term and the orthogonality term to make further dimension reduction. To solve the problem of integer optimization we adopt the relaxation-quantization method during the process of training neural networks. Empirically, we evaluate the performance of NBANE through node classification and clustering tasks on three real-world datasets and study a case on fast retrieval in academic networks. Our method achieves better performance over state- of-the-art baselines methods of various types.
2021-02-16
Navabi, S., Nayyar, A..  2020.  A Dynamic Mechanism for Security Management in Multi-Agent Networked Systems. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1628—1637.
We study the problem of designing a dynamic mechanism for security management in an interconnected multi-agent system with N strategic agents and one coordinator. The system is modeled as a network of N vertices. Each agent resides in one of the vertices of the network and has a privately known security state that describes its safety level at each time. The evolution of an agent's security state depends on its own state, the states of its neighbors in the network and on actions taken by a network coordinator. Each agent's utility at time instant t depends on its own state, the states of its neighbors in the network and on actions taken by a network coordinator. The objective of the network coordinator is to take security actions in order to maximize the long-term expected social surplus. Since agents are strategic and their security states are private information, the coordinator needs to incentivize agents to reveal their information. This results in a dynamic mechanism design problem for the coordinator. We leverage the inter-temporal correlations between the agents' security states to identify sufficient conditions under which an incentive compatible expected social surplus maximizing mechanism can be constructed. We then identify two special cases of our formulation and describe how the desired mechanism is constructed in these cases.
2021-02-15
Drakopoulos, G., Giotopoulos, K., Giannoukou, I., Sioutas, S..  2020.  Unsupervised Discovery Of Semantically Aware Communities With Tensor Kruskal Decomposition: A Case Study In Twitter. 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA. :1–8.
Substantial empirical evidence, including the success of synthetic graph generation models as well as of analytical methodologies, suggests that large, real graphs have a recursive community structure. The latter results, in part at least, in other important properties of these graphs such as low diameter, high clustering coefficient values, heavy degree distribution tail, and clustered graph spectrum. Notice that this structure need not be official or moderated like Facebook groups, but it can also take an ad hoc and unofficial form depending on the functionality of the social network under study as for instance the follow relationship on Twitter or the connections between news aggregators on Reddit. Community discovery is paramount in numerous applications such as political campaigns, digital marketing, crowdfunding, and fact checking. Here a tensor representation for Twitter subgraphs is proposed which takes into consideration both the followfollower relationships but also the coherency in hashtags. Community structure discovery then reduces to the computation of Tucker tensor decomposition, a higher order counterpart of the well-known unsupervised learning method of singular value decomposition (SVD). Tucker decomposition clearly outperforms the SVD in terms of finding a more compact community size distribution in experiments done in Julia on a Twitter subgraph. This can be attributed to the facts that the proposed methodology combines both structural and functional Twitter elements and that hashtags carry an increased semantic weight in comparison to ordinary tweets.
2020-12-15
Prajapati, S. A., Deb, S., Gupta, M. K..  2020.  On Some Universally Good Fractional Repetition Codes. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :404—411.
Data storage in Distributed Storage Systems (DSS) is a multidimensional optimization problem. Using network coding, one wants to provide reliability, scalability, security, reduced storage overhead, reduced bandwidth for repair and minimal disk I/O in such systems. Advances in the construction of optimal Fractional Repetition (FR) codes, a smart replication of encoded packets on n nodes which also provides optimized disk I/O and where a node failure can be repaired by contacting some specific set of nodes in the system, is in high demand. An attempt towards the construction of universally good FR codes using three different approaches is addressed in this work. In this paper, we present that the code constructed using the partial regular graph for heterogeneous DSS, where the number of packets on each node is different, is universally good. Further, we also encounter the list of parameters for which the ring construction and the T-construction results in universally good codes. In addition, we evaluate the FR code constructions meeting the minimum distance bound.
2020-10-12
Asadi, Nima, Rege, Aunshul, Obradovic, Zoran.  2018.  Analysis of Adversarial Movement Through Characteristics of Graph Topological Ordering. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–6.
Capturing the patterns in adversarial movement can provide valuable information regarding how the adversaries progress through cyberattacks. This information can be further employed for making comparisons and interpretations of decision making of the adversaries. In this study, we propose a framework based on concepts of social networks to characterize and compare the patterns, variations and shifts in the movements made by an adversarial team during a real-time cybersecurity exercise. We also explore the possibility of movement association with the skill sets using topological sort networks. This research provides preliminary insight on adversarial movement complexity and linearity and decision-making as cyberattacks unfold.
2020-08-17
Regol, Florence, Pal, Soumyasundar, Coates, Mark.  2019.  Node Copying for Protection Against Graph Neural Network Topology Attacks. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). :709–713.
Adversarial attacks can affect the performance of existing deep learning models. With the increased interest in graph based machine learning techniques, there have been investigations which suggest that these models are also vulnerable to attacks. In particular, corruptions of the graph topology can degrade the performance of graph based learning algorithms severely. This is due to the fact that the prediction capability of these algorithms relies mostly on the similarity structure imposed by the graph connectivity. Therefore, detecting the location of the corruption and correcting the induced errors becomes crucial. There has been some recent work which tackles the detection problem, however these methods do not address the effect of the attack on the downstream learning task. In this work, we propose an algorithm that uses node copying to mitigate the degradation in classification that is caused by adversarial attacks. The proposed methodology is applied only after the model for the downstream task is trained and the added computation cost scales well for large graphs. Experimental results show the effectiveness of our approach for several real world datasets.
Musa, Tanvirali, Yeo, Kheng Cher, Azam, Sami, Shanmugam, Bharanidharan, Karim, Asif, Boer, Friso De, Nur, Fernaz Narin, Faisal, Fahad.  2019.  Analysis of Complex Networks for Security Issues using Attack Graph. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.
Organizations perform security analysis for assessing network health and safe-guarding their growing networks through Vulnerability Assessments (AKA VA Scans). The output of VA scans is reports on individual hosts and its vulnerabilities, which, are of little use as the origin of the attack can't be located from these. Attack Graphs, generated without an in-depth analysis of the VA reports, are used to fill in these gaps, but only provide cursory information. This study presents an effective model of depicting the devices and the data flow that efficiently identifies the weakest nodes along with the concerned vulnerability's origin.The complexity of the attach graph using MulVal has been greatly reduced using the proposed approach of using the risk and CVSS base score as evaluation criteria. This makes it easier for the user to interpret the attack graphs and thus reduce the time taken needed to identify the attack paths and where the attack originates from.
2020-04-24
Ha, Dinh Truc, Retière, Nicolas, Caputo, Jean-Guy.  2019.  A New Metric to Quantify the Vulnerability of Power Grids. 2019 International Conference on System Science and Engineering (ICSSE). :206—213.
Major blackouts are due to cascading failures in power systems. These failures usually occur at vulnerable links of the network. To identify these, indicators have already been defined using complex network theory. However, most of these indicators only depend on the topology of the grid; they fail to detect the weak links. We introduce a new metric to identify the vulnerable lines, based on the load-flow equations and the grid geometry. Contrary to the topological indicators, ours is built from the electrical equations and considers the location and magnitude of the loads and of the power generators. We apply this new metric to the IEEE 118-bus system and compare its prediction of weak links to the ones given by an industrial software. The agreement is very well and shows that using our indicator a simple examination of the network and its generator and load distribution suffices to find the weak lines.
2020-04-20
Yuan, Jing, Ou, Yuyi, Gu, Guosheng.  2019.  An Improved Privacy Protection Method Based on k-degree Anonymity in Social Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :416–420.

To preserve the privacy of social networks, most existing methods are applied to satisfy different anonymity models, but there are some serious problems such as huge large information losses and great structural modifications of original social network. Therefore, an improved privacy protection method called k-subgraph is proposed, which is based on k-degree anonymous graph derived from k-anonymity to keep the network structure stable. The method firstly divides network nodes into several clusters by label propagation algorithm, and then reconstructs the sub-graph by means of moving edges to achieve k-degree anonymity. Experimental results show that our k-subgraph method can not only effectively improve the defense capability against malicious attacks based on node degrees, but also maintain stability of network structure. In addition, the cost of information losses due to anonymity is minimized ideally.

2020-02-10
Salehi, Sajjad, Taghiyareh, Fattaneh.  2019.  Introspective Agents in Opinion Formation Modeling to Predict Social Market. 2019 5th International Conference on Web Research (ICWR). :28–34.
Individuals may change their opinion in effect of a wide range of factors like interaction with peer groups, governmental policies and personal intentions. Works in this area mainly focus on individuals in social network and their interactions while neglect other factors. In this paper we have introduced an opinion formation model that consider the internal tendency as a personal feature of individuals in social network. In this model agents may trust, distrust or be neutral to their neighbors. They modify their opinion based on the opinion of their neighbors, trust/distrust to them while considering the internal tendency. The results of simulation show that this model can predict the opinion of social network especially when the average of nodal degree and clustering coefficient are high enough. Since this model can predict the preferences of individuals in market, it can be used to define marketing and production strategy.
Fedyanin, Denis, Giliazova, Albina.  2019.  Influence of Deactivated Agents in Social Networks: Switching Between French-De Groot Models and Friedkin-Johnsen Model. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1–5.
The paper shows the influence of deactivated agents in social networks: switching between French-De Groot models and Friedkin-Johnsen model.
2019-11-19
Nasiruzzaman, A. B. M., Akter, M. N., Mahmud, M. A., Pota, H. R..  2018.  Network Theory Based Power Grid Criticality Assessment. 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). :1-5.

A process of critical transmission lines identification in presented here. The criticality is based on network flow, which is essential for power grid connectivity monitoring as well as vulnerability assessment. The proposed method can be utilized as a supplement of traditional situational awareness tool in the energy management system of the power grid control center. At first, a flow network is obtained from topological as well as functional features of the power grid. Then from the duality property of a linear programming problem, the maximum flow problem is converted to a minimum cut problem. Critical transmission lines are identified as a solution of the dual problem. An overall set of transmission lines are identified from the solution of the network flow problem. Simulation of standard IEEE test cases validates the application of the method in finding critical transmission lines of the power grid.

Sun, Yunhe, Yang, Dongsheng, Meng, Lei, Gao, Xiaoting, Hu, Bo.  2018.  Universal Framework for Vulnerability Assessment of Power Grid Based on Complex Networks. 2018 Chinese Control And Decision Conference (CCDC). :136-141.

Traditionally, power grid vulnerability assessment methods are separated to the study of nodes vulnerability and edges vulnerability, resulting in the evaluation results are not accurate. A framework for vulnerability assessment is still required for power grid. Thus, this paper proposes a universal method for vulnerability assessment of power grid by establishing a complex network model with uniform weight of nodes and edges. The concept of virtual edge is introduced into the distinct weighted complex network model of power system, and the selection function of edge weight and virtual edge weight are constructed based on electrical and physical parameters. In addition, in order to reflect the electrical characteristics of power grids more accurately, a weighted betweenness evaluation index with transmission efficiency is defined. Finally, the method has been demonstrated on the IEEE 39 buses system, and the results prove the effectiveness of the proposed method.

Wang, Bo, Wang, Xunting.  2018.  Vulnerability Assessment Method for Cyber Physical Power System Considering Node Heterogeneity. 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :1109-1113.
In order to make up for the shortcomings of traditional evaluation methods neglecting node difference, a vulnerability assessment method considering node heterogeneity for cyber physical power system (CPPS) is proposed. Based on the entropy of the power flow and complex network theory, we establish heterogeneity evaluation index system for CPPS, which considers the survivability of island survivability and short-term operation of the communication network. For mustration, hierarchical CPPS model and distributed CPPS model are established respectively based on partitioning characteristic and different relationships of power grid and communication network. Simulation results show that distributed system is more robust than hierarchical system of different weighting factor whether under random attack or deliberate attack and a hierarchical system is more sensitive to the weighting factor. The proposed method has a better recognition effect on the equilibrium of the network structure and can assess the vulnerability of CPPS more accurately.
2019-08-26
Zhang, Y., Ya\u gan, O..  2018.  Modeling and Analysis of Cascading Failures in Interdependent Cyber-Physical Systems. 2018 IEEE Conference on Decision and Control (CDC). :4731-4738.

Integrated cyber-physical systems (CPSs), such as the smart grid, are becoming the underpinning technology for major industries. A major concern regarding such systems are the seemingly unexpected large scale failures, which are often attributed to a small initial shock getting escalated due to intricate dependencies within and across the individual counterparts of the system. In this paper, we develop a novel interdependent system model to capture this phenomenon, also known as cascading failures. Our framework consists of two networks that have inherently different characteristics governing their intra-dependency: i) a cyber-network where a node is deemed to be functional as long as it belongs to the largest connected (i.e., giant) component; and ii) a physical network where nodes are given an initial flow and a capacity, and failure of a node results with redistribution of its flow to the remaining nodes, upon which further failures might take place due to overloading. Furthermore, it is assumed that these two networks are inter-dependent. For simplicity, we consider a one-to-one interdependency model where every node in the cyber-network is dependent upon and supports a single node in the physical network, and vice versa. We provide a thorough analysis of the dynamics of cascading failures in this interdependent system initiated with a random attack. The system robustness is quantified as the surviving fraction of nodes at the end of cascading failures, and is derived in terms of all network parameters involved. Analytic results are supported through an extensive numerical study. Among other things, these results demonstrate the ability of our model to capture the unexpected nature of large-scale failures, and provide insights on improving system robustness.

2019-03-04
[Anonymous].  2018.  A Systems Approach to Indicators of Compromise Utilizing Graph Theory. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.
It is common to record indicators of compromise (IoC) in order to describe a particular breach and to attempt to attribute a breach to a specific threat actor. However, many network security breaches actually involve multiple diverse modalities using a variety of attack vectors. Measuring and recording IoC's in isolation does not provide an accurate view of the actual incident, and thus does not facilitate attribution. A system's approach that describes the entire intrusion as an IoC would be more effective. Graph theory has been utilized to model complex systems of varying types and this provides a mathematical tool for modeling systems indicators of compromise. This current paper describes the applications of graph theory to creating systems-based indicators of compromise. A complete methodology is presented for developing systems IoC's that fully describe a complex network intrusion.
2019-02-14
Zhang, S., Wolthusen, S. D..  2018.  Efficient Control Recovery for Resilient Control Systems. 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). :1-6.

Resilient control systems should efficiently restore control into physical systems not only after the sabotage of themselves, but also after breaking physical systems. To enhance resilience of control systems, given an originally minimal-input controlled linear-time invariant(LTI) physical system, we address the problem of efficient control recovery into it after removing a known system vertex by finding the minimum number of inputs. According to the minimum input theorem, given a digraph embedded into LTI model and involving a precomputed maximum matching, this problem is modeled into recovering controllability of it after removing a known network vertex. Then, we recover controllability of the residual network by efficiently finding a maximum matching rather than recomputation. As a result, except for precomputing a maximum matching and the following removed vertex, the worst-case execution time of control recovery into the residual LTI physical system is linear.

2018-09-05
Hossain, M. A., Merrill, H. M., Bodson, M..  2017.  Evaluation of metrics of susceptibility to cascading blackouts. 2017 IEEE Power and Energy Conference at Illinois (PECI). :1–5.
In this paper, we evaluate the usefulness of metrics that assess susceptibility to cascading blackouts. The metrics are computed using a matrix of Line Outage Distribution Factors (LODF, or DFAX matrix). The metrics are compared for several base cases with different load levels of the Western Interconnection (WI). A case corresponding to the September 8, 2011 pre-blackout state is used to compute these metrics and relate them to the origin of the cascading blackout. The correlation between the proposed metrics is determined to check redundancy. The analysis is also used to find vulnerable and critical hot spots in the power system.
2018-08-23
Abbas, W., Laszka, A., Vorobeychik, Y., Koutsoukos, X..  2017.  Improving network connectivity using trusted nodes and edges. 2017 American Control Conference (ACC). :328–333.

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.

2018-06-20
Jiao, L., Yin, H., Guo, D., Lyu, Y..  2017.  Heterogeneous Malware Spread Process in Star Network. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :265–269.

The heterogeneous SIS model for virus spread in any finite size graph characterizes the influence of factors of SIS model and could be analyzed by the extended N-Intertwined model introduced in [1]. We specifically focus on the heterogeneous virus spread in the star network in this paper. The epidemic threshold and the average meta-stable state fraction of infected nodes are derived for virus spread in the star network. Our results illustrate the effect of the factors of SIS model on the steady state infection.

2018-04-02
Yousefi, M., Mtetwa, N., Zhang, Y., Tianfield, H..  2017.  A Novel Approach for Analysis of Attack Graph. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :7–12.

Attack graph technique is a common tool for the evaluation of network security. However, attack graphs are generally too large and complex to be understood and interpreted by security administrators. This paper proposes an analysis framework for security attack graphs for a given IT infrastructure system. First, in order to facilitate the discovery of interconnectivities among vulnerabilities in a network, multi-host multi-stage vulnerability analysis (MulVAL) is employed to generate an attack graph for a given network topology. Then a novel algorithm is applied to refine the attack graph and generate a simplified graph called a transition graph. Next, a Markov model is used to project the future security posture of the system. Finally, the framework is evaluated by applying it on a typical IT network scenario with specific services, network configurations, and vulnerabilities.

Barrere, M., Steiner, R. V., Mohsen, R., Lupu, E. C..  2017.  Tracking the Bad Guys: An Efficient Forensic Methodology to Trace Multi-Step Attacks Using Core Attack Graphs. 2017 13th International Conference on Network and Service Management (CNSM). :1–7.

In this paper, we describe an efficient methodology to guide investigators during network forensic analysis. To this end, we introduce the concept of core attack graph, a compact representation of the main routes an attacker can take towards specific network targets. Such compactness allows forensic investigators to focus their efforts on critical nodes that are more likely to be part of attack paths, thus reducing the overall number of nodes (devices, network privileges) that need to be examined. Nevertheless, core graphs also allow investigators to hierarchically explore the graph in order to retrieve different levels of summarised information. We have evaluated our approach over different network topologies varying parameters such as network size, density, and forensic evaluation threshold. Our results demonstrate that we can achieve the same level of accuracy provided by standard logical attack graphs while significantly reducing the exploration rate of the network.

2018-02-27
Huang, L., Chen, J., Zhu, Q..  2017.  A Factored MDP Approach to Optimal Mechanism Design for Resilient Large-Scale Interdependent Critical Infrastructures. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.

Enhancing the security and resilience of interdependent infrastructures is crucial. In this paper, we establish a theoretical framework based on Markov decision processes (MDPs) to design optimal resiliency mechanisms for interdependent infrastructures. We use MDPs to capture the dynamics of the failure of constituent components of an infrastructure and their cyber-physical dependencies. Factored MDPs and approximate linear programming are adopted for an exponentially growing dimension of both state and action spaces. Under our approximation scheme, the optimally distributed policy is equivalent to the centralized one. Finally, case studies in a large-scale interdependent system demonstrate the effectiveness of the control strategy to enhance the network resilience to cascading failures.

2017-12-20
Li, S., Wang, B..  2017.  A Method for Hybrid Bayesian Network Structure Learning from Massive Data Using MapReduce. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :272–276.
Bayesian Network is the popular and important data mining model for representing uncertain knowledge. For large scale data it is often too costly to learn the accurate structure. To resolve this problem, much work has been done on migrating the structure learning algorithms to the MapReduce framework. In this paper, we introduce a distributed hybrid structure learning algorithm by combining the advantages of constraint-based and score-and-search-based algorithms. By reusing the intermediate results of MapReduce, the algorithm greatly simplified the computing work and got good results in both efficiency and accuracy.