Visible to the public Biblio

Found 1156 results

Filters: Keyword is Collaboration  [Clear All Filters]
2020-11-20
Lavrenovs, A., Melón, F. J. R..  2018.  HTTP security headers analysis of top one million websites. 2018 10th International Conference on Cyber Conflict (CyCon). :345—370.
We present research on the security of the most popular websites, ranked according to Alexa's top one million list, based on an HTTP response headers analysis. For each of the domains included in the list, we made four different requests: an HTTP/1.1 request to the domain itself and to its "www" subdomain and two more equivalent HTTPS requests. Redirections were always followed. A detailed discussion of the request process and main outcomes is presented, including X.509 certificate issues and comparison of results with equivalent HTTP/2 requests. The body of the responses was discarded, and the HTTP response header fields were stored in a database. We analysed the prevalence of the most important response headers related to web security aspects. In particular, we took into account Strict- Transport-Security, Content-Security-Policy, X-XSS-Protection, X-Frame-Options, Set-Cookie (for session cookies) and X-Content-Type. We also reviewed the contents of response HTTP headers that potentially could reveal unwanted information, like Server (and related headers), Date and Referrer-Policy. This research offers an up-to-date survey of current prevalence of web security policies implemented through HTTP response headers and concludes that most popular sites tend to implement it noticeably more often than less popular ones. Equally, HTTPS sites seem to be far more eager to implement those policies than HTTP only websites. A comparison with previous works show that web security policies based on HTTP response headers are continuously growing, but still far from satisfactory widespread adoption.
Alzahrani, A., Johnson, C., Altamimi, S..  2018.  Information security policy compliance: Investigating the role of intrinsic motivation towards policy compliance in the organization. 2018 4th International Conference on Information Management (ICIM). :125—132.
Recent behavioral research in information security has focused on increasing employees' motivation to enhance the security performance in an organization. This empirical study investigated employees' information security policy (ISP) compliance intentions using self-determination theory (SDT). Relevant hypotheses were developed to test the proposed research model. Data obtained via a survey (N=3D407) from a Fortune 600 organization in Saudi Arabia provides empirical support for the model. The results confirmed that autonomy, competence and the concept of relatedness all positively affect employees' intentions to comply. The variable 'perceived value congruence' had a negative effect on ISP compliance intentions, and the perceived legitimacy construct did not affect employees' intentions. In general, the findings of this study suggest that SDT has value in research into employees' ISP compliance intentions.
Moghaddam, F. F., Wieder, P., Yahyapour, R., Khodadadi, T..  2018.  A Reliable Ring Analysis Engine for Establishment of Multi-Level Security Management in Clouds. 2018 41st International Conference on Telecommunications and Signal Processing (TSP). :1—5.
Security and Privacy challenges are the most obstacles for the advancement of cloud computing and the erosion of trust boundaries already happening in organizations is amplified and accelerated by this emerging technology. Policy Management Frameworks are the most proper solutions to create dedicated security levels based on the sensitivity of resources and according to the mapping process between requirements cloud customers and capabilities of service providers. The most concerning issue in these frameworks is the rate of perfect matches between capabilities and requirements. In this paper, a reliable ring analysis engine has been introduced to efficiently map the security requirements of cloud customers to the capabilities of service provider and to enhance the rate of perfect matches between them for establishment of different security levels in clouds. In the suggested model a structural index has been introduced to receive the requirement and efficiently map them to the most proper security mechanism of the service provider. Our results show that this index-based engine enhances the rate of perfect matches considerably and decreases the detected conflicts in syntactic and semantic analysis.
Wang, X., Herwono, I., Cerbo, F. D., Kearney, P., Shackleton, M..  2018.  Enabling Cyber Security Data Sharing for Large-scale Enterprises Using Managed Security Services. 2018 IEEE Conference on Communications and Network Security (CNS). :1—7.
Large enterprises and organizations from both private and public sectors typically outsource a platform solution, as part of the Managed Security Services (MSSs), from 3rd party providers (MSSPs) to monitor and analyze their data containing cyber security information. Sharing such data among these large entities is believed to improve their effectiveness and efficiency at tackling cybercrimes, via improved analytics and insights. However, MSS platform customers currently are not able or not willing to share data among themselves because of multiple reasons, including privacy and confidentiality concerns, even when they are using the same MSS platform. Therefore any proposed mechanism or technique to address such a challenge need to ensure that sharing is achieved in a secure and controlled way. In this paper, we propose a new architecture and use case driven designs to enable confidential, flexible and collaborative data sharing among such organizations using the same MSS platform. MSS platform is a complex environment where different stakeholders, including authorized MSSP personnel and customers' own users, have access to the same platform but with different types of rights and tasks. Hence we make every effort to improve the usability of the platform supporting sharing while keeping the existing rights and tasks intact. As an innovative and pioneering attempt to address the challenge of data sharing in the MSS platform, we hope to encourage further work to follow so that confidential and collaborative sharing eventually happens among MSS platform customers.
Paul, S., Padhy, N. P., Mishra, S. K., Srivastava, A. K..  2019.  UUCA: Utility-User Cooperative Algorithm for Flexible Load Scheduling in Distribution System. 2019 8th International Conference on Power Systems (ICPS). :1—6.
Demand response analysis in smart grid deployment substantiated itself as an important research area in recent few years. Two-way communication between utility and users makes peak load reduction feasible by delaying the operation of deferrable appliances. Flexible appliance rescheduling is preferred to the users compared to traditional load curtailment. Again, if users' preferences are accounted into appliance transferring process, then customers concede a little discomfort to help the utility in peak reduction. This paper presents a novel Utility-User Cooperative Algorithm (UUCA) to lower total electricity cost and gross peak demand while preserving users' privacy and preferences. Main driving force in UUCA to motivate the consumers is a new cost function for their flexible appliances. As a result, utility will experience low peak and due to electricity cost decrement, users will get reduced bill. However, to maintain privacy, the behaviors of one customer have not be revealed either to other customers or to the central utility. To justify the effectiveness, UUCA is executed separately on residential, commercial and industrial customers of a distribution grid. Harmony search optimization technique has proved itself superior compared to other heuristic search techniques to prove efficacy of UUCA.
Sarochar, J., Acharya, I., Riggs, H., Sundararajan, A., Wei, L., Olowu, T., Sarwat, A. I..  2019.  Synthesizing Energy Consumption Data Using a Mixture Density Network Integrated with Long Short Term Memory. 2019 IEEE Green Technologies Conference(GreenTech). :1—4.
Smart cities comprise multiple critical infrastructures, two of which are the power grid and communication networks, backed by centralized data analytics and storage. To effectively model the interdependencies between these infrastructures and enable a greater understanding of how communities respond to and impact them, large amounts of varied, real-world data on residential and commercial consumer energy consumption, load patterns, and associated human behavioral impacts are required. The dissemination of such data to the research communities is, however, largely restricted because of security and privacy concerns. This paper creates an opportunity for the development and dissemination of synthetic energy consumption data which is inherently anonymous but holds similarities to the properties of real data. This paper explores a framework using mixture density network (MDN) model integrated with a multi-layered Long Short-Term Memory (LSTM) network which shows promise in this area of research. The model is trained using an initial sample recorded from residential smart meters in the state of Florida, and is used to generate fully synthetic energy consumption data. The synthesized data will be made publicly available for interested users.
Semwal, S., Badoni, M., Saxena, N..  2019.  Smart Meters for Domestic Consumers: Innovative Methods for Identifying Appliances using NIALM. 2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE). :81—90.
A country drives by their people and the electricity energy, the availability of the electricity power reflects the strength of that country. All most everything depends on the electricity energy, So it is become very important that we use the available energy very efficiently, and here the energy management come in the picture and Non Intrusive appliance Load monitoring (NIALM) is the part of energy management, in which the energy consumption by the particular load is monitored without any intrusion of wire/circuit. In literature, NIALM has been discussed as a monitoring process for conservation of energy using single point sensing (SPS) for extraction of aggregate signal of the appliances' features, ignoring the second function of demand response (DR) assuming that it would be manual or sensor-based. This assumption is not implementable in developing countries like India, because of requirement of extra cost of sensors, and privacy concerns. Surprisingly, despite decades of research on NIALM, none of the suggested procedures has resulted in commercial application. This paper highlights the causes behind non- commercialization, and proposes a viable and easy solution worthy of commercial exploitation both for monitoring and DR management for outage reduction in respect of Indian domestic consumers. Using a approach of multi point sensing (MPS), combined with Independent Component Analysis (ICA), experiments has been done in laboratory environment and CPWD specification has been followed.
Efstathopoulos, G., Grammatikis, P. R., Sarigiannidis, P., Argyriou, V., Sarigiannidis, A., Stamatakis, K., Angelopoulos, M. K., Athanasopoulos, S. K..  2019.  Operational Data Based Intrusion Detection System for Smart Grid. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.

With the rapid progression of Information and Communication Technology (ICT) and especially of Internet of Things (IoT), the conventional electrical grid is transformed into a new intelligent paradigm, known as Smart Grid (SG). SG provides significant benefits both for utility companies and energy consumers such as the two-way communication (both electricity and information), distributed generation, remote monitoring, self-healing and pervasive control. However, at the same time, this dependence introduces new security challenges, since SG inherits the vulnerabilities of multiple heterogeneous, co-existing legacy and smart technologies, such as IoT and Industrial Control Systems (ICS). An effective countermeasure against the various cyberthreats in SG is the Intrusion Detection System (IDS), informing the operator timely about the possible cyberattacks and anomalies. In this paper, we provide an anomaly-based IDS especially designed for SG utilising operational data from a real power plant. In particular, many machine learning and deep learning models were deployed, introducing novel parameters and feature representations in a comparative study. The evaluation analysis demonstrated the efficacy of the proposed IDS and the improvement due to the suggested complex data representation.

Prasad, G., Huo, Y., Lampe, L., Leung, V. C. M..  2019.  Machine Learning Based Physical-Layer Intrusion Detection and Location for the Smart Grid. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
Security and privacy of smart grid communication data is crucial given the nature of the continuous bidirectional information exchange between the consumer and the utilities. Data security has conventionally been ensured using cryptographic techniques implemented at the upper layers of the network stack. However, it has been shown that security can be further enhanced using physical layer (PHY) methods. To aid and/or complement such PHY and upper layer techniques, in this paper, we propose a PHY design that can detect and locate not only an active intruder but also a passive eavesdropper in the network. Our method can either be used as a stand-alone solution or together with existing techniques to achieve improved smart grid data security. Our machine learning based solution intelligently and automatically detects and locates a possible intruder in the network by reusing power line transmission modems installed in the grid for communication purposes. Simulation results show that our cost-efficient design provides near ideal intruder detection rates and also estimates its location with a high degree of accuracy.
Roy, D. D., Shin, D..  2019.  Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :576—581.
Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1].
Lu, X., Guan, Z., Zhou, X., Du, X., Wu, L., Guizani, M..  2019.  A Secure and Efficient Renewable Energy Trading Scheme Based on Blockchain in Smart Grid. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1839—1844.
Nowadays, with the diversification and decentralization of energy systems, the energy Internet makes it possible to interconnect distributed energy sources and consumers. In the energy trading market, the traditional centralized model relies entirely on trusted third parties. However, as the number of entities involved in the transactions grows and the forms of transactions diversify, the centralized model gradually exposes problems such as insufficient scalability, High energy consumption, and low processing efficiency. To address these challenges, we propose a secure and efficient energy renewable trading scheme based on blockchain. In our scheme, the electricity market trading model is divided into two levels, which can not only protect the privacy, but also achieve a green computing. In addition, in order to adapt to the relatively weak computing power of the underlying equipment in smart grid, we design a credibility-based equity proof mechanism to greatly improve the system availability. Compared with other similar distributed energy trading schemes, we prove the advantages of our scheme in terms of high operational efficiency and low computational overhead through experimental evaluations. Additionally, we conduct a detailed security analysis to demonstrate that our solution meets the security requirements.
Lardier, W., Varo, Q., Yan, J..  2019.  Quantum-Sim: An Open-Source Co-Simulation Platform for Quantum Key Distribution-Based Smart Grid Communications. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
Grid modernization efforts with the latest information and communication technologies will significantly benefit smart grids in the coming years. More optical fibre communications between consumers and the control center will promise better demand response and customer engagement, yet the increasing attack surface and man-in-the-middle (MITM) threats can result in security and privacy challenges. Among the studies for more secure smart grid communications, quantum key distribution protocols (QKD) have emerged as a promising option. To bridge the theoretical advantages of quantum communication to its practical utilization, however, comprehensive investigations have to be conducted with realistic cyber-physical smart grid structures and scenarios. To facilitate research in this direction, this paper proposes an open-source, research-oriented co-simulation platform that orchestrates cyber and power simulators under the MOSAIK framework. The proposed platform allows flexible and realistic power flow-based co-simulation of quantum communications and electrical grids, where different cyber and power topologies, QKD protocols, and attack threats can be investigated. Using quantum-based communication under MITM attacks, the paper presented detailed case studies to demonstrate how the platform enables quick setup of a lowvoltage distribution grid, implementation of different protocols and cryptosystems, as well as evaluations of both communication efficiency and security against MITM attacks. The platform has been made available online to empower researchers in the modelling of quantum-based cyber-physical systems, pilot studies on quantum communications in smart grid, as well as improved attack resilience against malicious intruders.
Romdhane, R. B., Hammami, H., Hamdi, M., Kim, T..  2019.  At the cross roads of lattice-based and homomorphic encryption to secure data aggregation in smart grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1067—1072.

Various research efforts have focused on the problem of customer privacy protection in the smart grid arising from the large deployment of smart energy meters. In fact, the deployed smart meters distribute accurate profiles of home energy use, which can reflect the consumers' behaviour. This paper proposes a privacy-preserving lattice-based homomorphic aggregation scheme. In this approach, the smart household appliances perform the data aggregation while the smart meter works as relay node. Its role is to authenticate the exchanged messages between the home area network appliances and the related gateway. Security analysis show that our scheme guarantees consumer privacy and messages confidentiality and integrity in addition to its robustness against several attacks. Experimental results demonstrate the efficiency of our proposed approach in terms of communication complexity.

Antoniadis, I. I., Chatzidimitriou, K. C., Symeonidis, A. L..  2019.  Security and Privacy for Smart Meters: A Data-Driven Mapping Study. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
Smart metering systems have been gaining popularity as a vital part of the general smart grid paradigm. Naturally, as new technologies arise to cover this emerging field, so do security and privacy related issues regarding the energy consumer's personal data. These challenges impose the need for the development of new methods through a better understanding of the state-of-the-art. This paper aims at identifying the main categories of security and privacy techniques utilized in smart metering systems from a three-point perspective: i) a field research survey, ii) EU initiatives and findings towards the same direction and iii) a data-driven analysis of the state-of-the-art and the identification of its main topics (or themes) using topic modeling techniques. Detailed quantitative results of this analysis, such as semantic interpretation of the identified topics and a graph representation of the topic trends over time, are presented.
Chin, J., Zufferey, T., Shyti, E., Hug, G..  2019.  Load Forecasting of Privacy-Aware Consumers. 2019 IEEE Milan PowerTech. :1—6.

The roll-out of smart meters (SMs) in the electric grid has enabled data-driven grid management and planning techniques. SM data can be used together with short-term load forecasts (STLFs) to overcome polling frequency constraints for better grid management. However, the use of SMs that report consumption data at high spatial and temporal resolutions entails consumer privacy risks, motivating work in protecting consumer privacy. The impact of privacy protection schemes on STLF accuracy is not well studied, especially for smaller aggregations of consumers, whose load profiles are subject to more volatility and are, thus, harder to predict. In this paper, we analyse the impact of two user demand shaping privacy protection schemes, model-distribution predictive control (MDPC) and load-levelling, on STLF accuracy. Support vector regression is used to predict the load profiles at different consumer aggregation levels. Results indicate that, while the MDPC algorithm marginally affects forecast accuracy for smaller consumer aggregations, this diminishes at higher aggregation levels. More importantly, the load-levelling scheme significantly improves STLF accuracy as it smoothens out the grid visible consumer load profile.

2020-11-02
Saksupapchon, Punyapat, Willoughby, Kelvin W..  2019.  Contextual Factors Affecting Decisions About Intellectual Property Licensing Provisions in Collaboration Agreements for Open Innovation Projects of Complex Technological Organizations. 2019 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE). :1—2.

Firms collaborate with partners in research and development (R&D) of new technologies for many reasons such as to access complementary knowledge, know-how or skills, to seek new opportunities outside their traditional technology domain, to sustain their continuous flows of innovation, to reduce time to market, or to share risks and costs [1]. The adoption of collaborative research agreements (CRAs) or collaboration agreements (CAs) is rising rapidly as firms attempt to access innovation from various types of organizations to enhance their traditional in-house innovation [2], [3]. To achieve the objectives of their collaborations, firms need to share knowledge and jointly develop new knowledge. As more firms adopt open collaborative innovation strategies, intellectual property (IP) management has inevitably become important because clear and fair contractual IP terms and conditions such as IP ownership allocation, licensing arrangements and compensation for IP access are required for each collaborative project [4], [5]. Moreover, the firms need to adjust their IP management strategies to fit the unique characteristics and circumstances of each particular project [5].

2020-10-16
Liu, Liping, Piao, Chunhui, Jiang, Xuehong, Zheng, Lijuan.  2018.  Research on Governmental Data Sharing Based on Local Differential Privacy Approach. 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE). :39—45.

With the construction and implementation of the government information resources sharing mechanism, the protection of citizens' privacy has become a vital issue for government departments and the public. This paper discusses the risk of citizens' privacy disclosure related to data sharing among government departments, and analyzes the current major privacy protection models for data sharing. Aiming at the issues of low efficiency and low reliability in existing e-government applications, a statistical data sharing framework among governmental departments based on local differential privacy and blockchain is established, and its applicability and advantages are illustrated through example analysis. The characteristics of the private blockchain enhance the security, credibility and responsiveness of information sharing between departments. Local differential privacy provides better usability and security for sharing statistics. It not only keeps statistics available, but also protects the privacy of citizens.

Babenko, Liudmila, Pisarev, Ilya.  2018.  Security Analysis of the Electronic Voting Protocol Based on Blind Intermediaries Using the SPIN Verifier. 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :43—435.

Cryptographic protocols are the basis for the security of any protected system, including the electronic voting system. One of the most effective ways to analyze protocol security is to use verifiers. In this paper, the formal verifier SPIN was used to analyze the security of the cryptographic protocol for e-voting, which is based on model checking using linear temporal logic (LTL). The cryptographic protocol of electronic voting is described. The main structural units of the Promela language used for simulation in the SPIN verifier are described. The model of the electronic voting protocol in the language Promela is given. The interacting parties, transferred data, the order of the messages transmitted between the parties are described. Security of the cryptographic protocol using the SPIN tool is verified. The simulation of the protocol with active intruder using the man in the middle attack (MITM) to substitute data is made. In the simulation results it is established that the protocol correctly handles the case of an active attack on the parties' authentication.

Kő, Andrea, Molnár, Tamás, Mátyus, Bálint.  2018.  A User-centred Design Approach for Mobile- Government Systems for the Elderly. 2018 12th International Conference on Software, Knowledge, Information Management Applications (SKIMA). :1—7.

This paper aims to discover the characteristics of acceptance of mobile government systems by elderly. Several initiatives and projects offer various governmental services for them, like information sharing, alerting and mHealth services. All of them carry important benefits for this user group, but these can only be utilized if the user acceptance is at a certain level. This is a requirement in order for the users to perceive the services as a benefit and not as hindrance. The key aspects for high acceptance are usability and user-friendliness, which will lead to successful-government systems designed for the target group. We have applied a combination of qualitative and quantitative research methods including an m-Government prototype to explore the key acceptance factors. Research approach utilizes the IGUAN framework, which is a user-driven method. We collected and analysed data guided by IGUAN framework about the acceptance of e-government services by elderly. The target group was recruited from Germany and Hungary. Our findings draw the attention to perceived security and perceived usability of an application; these are decisive factors for this target group.

Pandes, Tiffany Lyn O., Omorog, Challiz D., Medrano, Regino B..  2018.  LeMTrac: Legislative Management and Tracking System. :1—6.

{Information and Communications Technology (ICT) have rationalized government services into a more efficient and transparent government. However, a large part of the government services remained constant in the manual process due to the high cost of ICT. The purpose of this paper is to explore the role of e-governance and ICT in the legislative management of municipalities in the Philippines. This study adopted the phases of Princeton Project Management Methodology (PPMM) as the approach in the development of LeMTrac. This paper utilized the developmental- quantitative research design involving two (2) sets of respondents, which are the end-users and IT experts. Majority of the respondents perceived that the system as "highly acceptable" with an average Likert score of 4.72 for the ISO 9126 Software quality metric Usability. The findings also reveal that the integration of LeMTrac within the Sangguniang Bayan (SB) Office in the Municipal Local Government Units (LGU) of Nabua and Bula, Camarines Sur provided better accessibility, security, and management of documents.

Tungela, Nomawethu, Mutudi, Maria, Iyamu, Tiko.  2018.  The Roles of E-Government in Healthcare from the Perspective of Structuration Theory. 2018 Open Innovations Conference (OI). :332—338.

The e-government concept and healthcare have usually been studied separately. Even when and where both e-government and healthcare systems were combined in a study, the roles of e-government in healthcare have not been examined. As a result., the complementarity of the systems poses potential challenges. The interpretive approach was applied in this study. Existing materials in the areas of healthcare and e-government were used as data from a qualitative method viewpoint. Dimension of change from the perspective of the structuration theory was employed to guide the data analysis. From the analysis., six factors were found to be the main roles of e-government in the implementation and application of e-health in the delivering of healthcare services. An understanding of the roles of e-government promotes complementarity., which enhances the healthcare service delivery to the community.

Sayed Javed, Ahmad.  2018.  Total e-Governance: Pros Cons. 2018 International Conference on Computational Science and Computational Intelligence (CSCI). :245—249.

"Good Governance" - may it be corporate or governmental, is a badly needed focus area in the world today where the companies and governments are struggling to survive the political and economical turmoil around the globe. All governments around the world have a tendency of expanding the size of their government, but eventually they would be forced to think reducing the size by incorporating information technology as a way to provide services to the citizens effectively and efficiently. Hence our attempt is to offer a complete solution from birth of a citizen till death encompassing all the necessary services related to the well being of a person living in a society. Our research and analysis would explore the pros and cons of using IT as a solution to our problems and ways to implement them for a best outcome in e-Governance occasionally comparing with the present scenario when relevant.

Ingale, Alpana A., Moon, Sunil K..  2018.  E-Government Documents Authentication and Security by Utilizing Video Crypto-Steganography. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :141—145.

In our daily lives, the advances of new technology can be used to sustain the development of people across the globe. Particularly, e-government can be the dynamo of the development for the people. The development of technology and the rapid growth in the use of internet creates a big challenge in the administration in both the public and the private sector. E-government is a vital accomplishment, whereas the security is the main downside which occurs in each e-government process. E-government has to be secure as technology grows and the users have to follow the procedures to make their own transactions safe. This paper tackles the challenges and obstacles to enhance the security of information in e-government. Hence to achieve security data hiding techniques are found to be trustworthy. Reversible data hiding (RDH) is an emerging technique which helps in retaining the quality of the cover image. Hence it is preferred over the traditional data hiding techniques. Modification in the existing algorithm is performed for image encryption scheme and data hiding scheme in order to improve the results. To achieve this secret data is split into 20 parts and data concealing is performed on each part. The data hiding procedure includes embedding of data into least significant nibble of the cover image. The bits are further equally distributed in the cover image to obtain the key security parameters. Hence the obtained results validate that the proposed scheme is better than the existing schemes.

Al-Nemrat, Ameer.  2018.  Identity theft on e-government/e-governance digital forensics. 2018 International Symposium on Programming and Systems (ISPS). :1—1.

In the context of the rapid technological progress, the cyber-threats become a serious challenge that requires immediate and continuous action. As cybercrime poses a permanent and increasing threat, governments, corporate and individual users of the cyber-space are constantly struggling to ensure an acceptable level of security over their assets. Maliciousness on the cyber-space spans identity theft, fraud, and system intrusions. This is due to the benefits of cyberspace-low entry barriers, user anonymity, and spatial and temporal separation between users, make it a fertile field for deception and fraud. Numerous, supervised and unsupervised, techniques have been proposed and used to identify fraudulent transactions and activities that deviate from regular patterns of behaviour. For instance, neural networks and genetic algorithms were used to detect credit card fraud in a dataset covering 13 months and 50 million credit card transactions. Unsupervised methods, such as clustering analysis, have been used to identify financial fraud or to filter fake online product reviews and ratings on e-commerce websites. Blockchain technology has demonstrated its feasibility and relevance in e-commerce. Its use is now being extended to new areas, related to electronic government. The technology appears to be the most appropriate in areas that require storage and processing of large amounts of protected data. The question is what can blockchain technology do and not do to fight malicious online activity?

AlEnezi, Ali, AlMeraj, Zainab, Manuel, Paul.  2018.  Challenges of IoT Based Smart-Government Development. 2018 IEEE Green Technologies Conference (GreenTech). :155—160.

Smart governments are known as extensions of e-governments both built on the Internet of Things (IoT). In this paper, we classify smart governments into two types (1) new generation and (2) extended smart-government. We then put forth a framework for smart governments implementation and discuss the major challenges in its implementation showing security as the most prominent challenge in USA, mindscaping in Kuwait and investment in India.