Visible to the public Biblio

Found 1156 results

Filters: Keyword is Collaboration  [Clear All Filters]
2020-07-24
Munsyi, Sudarsono, Amang, Harun Al Rasvid, M. Udin.  2018.  An Implementation of Data Exchange in Environmental Monitoring Using Authenticated Attribute-Based Encryption with Revocation. 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC). :359—366.
Internet of things era grown very rapidly in Industrial Revolution 4.0, there are many researchers use the Wireless Sensor Network (WSN) technology to obtain the data for environmental monitoring. The data obtained from WSN will be sent to the Data Center, where users can view and collect all of data from the Data Center using end devices such as personal computer, laptop, and mobile phone. The Data Center would be very dangerous, because everyone can intercept, track and even modify the data. Security requirement to ensure the confidentiality all of stored data in the data center and give the authenticity in data has not changed during the collection process. Ciphertext Policy Attribute-Based Encryption (CP-ABE) can become a solution to secure the confidentiality for all of data. Only users with appropriate rule of policy can get the original data. To guarantee there is no changes during the collection process of the data then require the time stamp digital signature for securing the data integrity. To protect the confidentiality and data integrity, we propose a security mechanism using CP-ABE with user revocation and Time Stamp Digital Signature using Elliptic Curve Cryptography (ECC) 384 bits. Our system can do the revocation for the users who did the illegal access. Our system is not only securing the data but also providing the guarantee that is no changes during the collection process of the data from the Data Center.
Chennam, KrishnaKeerthi, Muddana, Lakshmi.  2018.  Improving Privacy and Security with Fine Grained Access Control Policy using Two Stage Encryption with Partial Shuffling in Cloud. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT). :686—690.

In a computer world, to identify anyone by doing a job or to authenticate by checking their identification and give access to computer. Access Control model comes in to picture when require to grant the permissions to individual and complete the duties. The access control models cannot give complete security when dealing with cloud computing area, where access control model failed to handle the attributes which are requisite to inhibit access based on time and location. When the data outsourced in the cloud, the information holders expect the security and confidentiality for their outsourced data. The data will be encrypted before outsourcing on cloud, still they want control on data in cloud server, where simple encryption is not a complete solution. To irradiate these issues, unlike access control models proposed Attribute Based Encryption standards (ABE). In ABE schemes there are different types like Key Policy-ABE (KP-ABE), Cipher Text-ABE (CP-ABE) and so on. The proposed method applied the access control policy of CP-ABE with Advanced Encryption Standard and used elliptic curve for key generation by using multi stage encryption which divides the users into two domains, public and private domains and shuffling the data base records to protect from inference attacks.

Liu, Zechao, Jiang, Zoe L., Wang, Xuan, Wu, Yulin, Yiu, S.M..  2018.  Multi-Authority Ciphertext Policy Attribute-Based Encryption Scheme on Ideal Lattices. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :1003—1008.
Ciphertext policy attribute-based encryption (CP-ABE) is a promising cryptographic technology that provides fine-grained access control as well as data confidentiality. It enables one sender to encrypt the data for more receivers, and to specify a policy on who can decrypt the ciphertext using his/her attributes alone. However, most existing ABE schemes are constructed on bilinear maps and they cannot resist quantum attacks. In this paper, we propose a multi-authority CP-ABE (MA-CPABE) scheme on ideal lattices which is still secure in post-quantum era. On one hand, multiple attribute authorities are required when user's attributes cannot be managed by a central authority. On the other hand, compared with generic lattice, the ideal lattice has extra algebraic structure and can be used to construct more efficient cryptographic applications. By adding some virtual attributes for each authority, our scheme can support flexible threshold access policy. Security analysis shows that the proposed scheme is secure against chosen plaintext attack (CPA) in the standard model under the ring learning with errors (R-LWE) assumption.
Dong, Qiuxiang, Huang, Dijiang, Luo, Jim, Kang, Myong.  2018.  Achieving Fine-Grained Access Control with Discretionary User Revocation over Cloud Data. 2018 IEEE Conference on Communications and Network Security (CNS). :1—9.
Cloud storage solutions have gained momentum in recent years. However, cloud servers can not be fully trusted. Data access control have becomes one of the main impediments for further adoption. One appealing approach is to incorporate the access control into encrypted data, thus removing the need to trust the cloud servers. Among existing cryptographic solutions, Ciphertext Policy Attribute-Based Encryption (CP-ABE) is well suited for fine-grained data access control in cloud storage. As promising as it is, user revocation is a cumbersome problem that impedes its wide application. To address this issue, we design an access control system called DUR-CP-ABE, which implements identity-based User Revocation in a data owner Discretionary way. In short, the proposed solution provides the following salient features. First, user revocation enforcement is based on the discretion of the data owner, thus providing more flexibility. Second, no private key updates are needed when user revocation occurs. Third, the proposed scheme allows for group revocation of affiliated users in a batch operation. To the best of our knowledge, DUR-CP-ABE is the first CP-ABE solution to provide affiliation- based batch revocation functionality, which fits naturally into organizations' Identity and Access Management (IAM) structure. The analysis shows that the proposed access control system is provably secure and efficient in terms of computation, communi- cation and storage.
Navya, J M, Sanjay, H A, Deepika, KM.  2018.  Securing smart grid data under key exposure and revocation in cloud computing. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C). :1—4.
Smart grid systems data has been exposed to several threats and attacks from different perspectives and have resulted in several system failures. Obtaining security of data and key exposure and enhancing system ability in data collection and transmission process are challenging, on the grounds smart grid data is sensitive and enormous sum. In this paper we introduce smart grid data security method along with advanced Cipher text policy attribute based encryption (CP-ABE). Cloud supported IoT is widely used in smart grid systems. Smart IoT devices collect data and perform status management. Data obtained from the IOT devices will be divided into blocks and encrypted data will be stored in different cloud server with different encrypted keys even when one cloud server is assaulted and encrypted key is exposed data cannot be decrypted, thereby the transmission and encryption process are done in correspondingly. We protect access-tree structure information even after the data is shared to user by solving revocation problem in which cloud will inform data owner to revoke and update encryption key after user has downloaded the data, which preserves the data privacy from unauthorized users. The analysis of the system concludes that our proposed system can meet the security requirements in smart grid systems along with cloud-Internet of things.
Fugkeaw, Somchart, Sato, Hiroyuki.  2018.  Enabling Dynamic and Efficient Data Access Control in Cloud Computing Based on Attribute Certificate Management and CP-ABE. 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). :454—461.
In this paper, we propose an access control model featured with the efficient key update function in data outsourcing environment. Our access control is based on the combination of Ciphertext Policy - Attribute-based Encryption (CP-ABE) and Role-based Access Control (RBAC). The proposed scheme aims to improve the attribute and key update management of the original CP-ABE. In our scheme, a user's key is incorporated into the attribute certificate (AC) which will be used to decrypt the ciphertext encrypted with CP-ABE policy. If there is any change (update or revoke) of the attributes appearing in the key, the key in the AC will be updated upon the access request. This significantly reduces the overheads in updating and distributing keys of all users simultaneously compared to the existing CP-ABE based schemes. Finally, we conduct the experiment to evaluate the performance of our proposed scheme to show the efficiency of our proposed scheme.
Khuntia, Sucharita, Kumar, P. Syam.  2018.  New Hidden Policy CP-ABE for Big Data Access Control with Privacy-preserving Policy in Cloud Computing. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Cloud offers flexible and cost effective storage for big data but the major challenge is access control of big data processing. CP-ABE is a desirable solution for data access control in cloud. However, in CP-ABE the access policy may leak user's private information. To address this issue, Hidden Policy CP-ABE schemes proposed but those schemes still causing data leakage problem because the access policies are partially hidden and create more computational cost. In this paper, we propose a New Hidden Policy Ciphertext Policy Attribute Based Encryption (HP-CP-ABE) to ensure Big Data Access Control with Privacy-preserving Policy in Cloud. In proposed method, we used Multi Secret Sharing Scheme(MSSS) to reduce the computational overhead, while encryption and decryption process. We also applied mask technique on each attribute in access policy and embed the access policy in ciphertext, to protect user's private information from access policy. The security analysis shows that HP-CP-ABE is more secure and preserve the access policy privacy. Performance evaluation shows that our schemes takes less computational cost than existing scheme.
Shelke, Vishakha M., Kenny, John.  2018.  Data Security in cloud computing using Hierarchical CP-ABE scheme with scalability and flexibility. 2018 International Conference on Smart City and Emerging Technology (ICSCET). :1—5.

Cloud computing has a major role in the development of commercial systems. It enables companies like Microsoft, Amazon, IBM and Google to deliver their services on a large scale to its users. A cloud service provider manages cloud computing based services and applications. For any organization a cloud service provider (CSP) is an entity which works within it. So it suffers from vulnerabilities associated with organization, including internal and external attacks. So its challenge to organization to secure a cloud service provider while providing quality of service. Attribute based encryption can be used to provide data security with Key policy attribute based encryption (KP-ABE) or ciphertext policy attribute based encryption (CP-ABE). But these schemes has lack of scalability and flexibility. Hierarchical CP-ABE scheme is proposed here to provide fine grained access control. Data security is achieved using encryption, authentication and authorization mechanisms. Attribute key generation is proposed for implementing authorization of users. The proposed system is prevented by SQL Injection attack.

Wang, Wei, Zhang, Guidong, Shen, Yongjun.  2018.  A CP-ABE Scheme Supporting Attribute Revocation and Policy Hiding in Outsourced Environment. 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). :96—99.
Aiming at the increasing popularity of mobile terminals, a CP-ABE scheme adapted to lightweight decryption at the mobile end is proposed. The scheme has the function of supporting timely attributes revocation and policy hiding. Firstly, we will introduce the related knowledge of attribute base encryption. After that, we will give a specific CP-ABE solution. Finally, in the part of the algorithm analysis, we will give analysis performance and related security, and compare this algorithm with other algorithms.
Li, Chunhua, He, Jinbiao, Lei, Cheng, Guo, Chan, Zhou, Ke.  2018.  Achieving Privacy-Preserving CP-ABE Access Control with Multi-Cloud. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :801—808.
Cloud storage service makes it very convenient for people to access and share data. At the same time, the confidentiality and privacy of user data is also facing great challenges. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme is widely considered to be the most suitable security access control technology for cloud storage environment. Aiming at the problem of privacy leakage caused by single-cloud CP-ABE which is commonly adopted in the current schemes, this paper proposes a privacy-preserving CP-ABE access control scheme using multi-cloud architecture. By improving the traditional CP-ABE algorithm and introducing a proxy to cut the user's private key, it can ensure that only a part of the user attribute set can be obtained by a single cloud, which effectively protects the privacy of user attributes. Meanwhile, the intermediate logical structure of the access policy tree is stored in proxy, and only the leaf node information is stored in the ciphertext, which effectively protects the privacy of the access policy. Security analysis shows that our scheme is effective against replay and man-in-the-middle attacks, as well as user collusion attack. Experimental results also demonstrates that the multi-cloud CP-ABE does not significantly increase the overhead of storage and encryption compared to the single cloud scheme, but the access control overhead decreases as the number of clouds increases. When the access policy is expressed with a AND gate structure, the decryption overhead is obviously less than that of a single cloud environment.
Jiang, Feng, Qi, Buren, Wu, Tianhao, Zhu, Konglin, Zhang, Lin.  2019.  CPSS: CP-ABE based Platoon Secure Sensing Scheme against Cyber-Attacks. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). :3218—3223.

Platoon is one of cooperative driving applications where a set of vehicles can collaboratively sense each other for driving safety and traffic efficiency. However, platoon without security insurance makes the cooperative vehicles vulnerable to cyber-attacks, which may cause life-threatening accidents. In this paper, we introduce malicious attacks in platoon maneuvers. To defend against these attacks, we propose a Cyphertext-Policy Attribute-Based Encryption (CP-ABE) based Platoon Secure Sensing scheme, named CPSS. In the CPSS, platoon key is encapsulated in the access control structure in the key distribution process, so that interference messages sending by attackers without the platoon key could be ignored. Therefore, the sensing data which contains speed and position information can be protected. In this way, speed and distance fluctuations caused by attacks can be mitigated even eliminated thereby avoiding the collisions and ensuring the overall platoon stability. Time complexity analysis shows that the CPSS is more efficient than that of the polynomial time solutions. Finally, to evaluate capabilities of the CPSS, we integrate a LTE-V2X with platoon maneuvers based on Veins platform. The evaluation results show that the CPSS outperforms the baseline algorithm by 25% in terms of distance variations.

Wang, Fucai, Shi, Ting, Li, Shijin.  2019.  Authorization of Searchable CP-ABE Scheme with Attribute Revocation in Cloud Computing. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :204—208.

Most searchable attribute-based encryption schemes only support the search for single-keyword without attribute revocation, the data user cannot quickly detect the validity of the ciphertext returned by the cloud service provider. Therefore, this paper proposes an authorization of searchable CP-ABE scheme with attribute revocation and applies the scheme to the cloud computing environment. The data user to send the authorization information to the authorization server for authorization, assists the data user to effectively detect the ciphertext information returned by the cloud service provider while supporting the revocation of the user attribute in a fine-grained access control structure without updating the key during revocation stage. In the random oracle model based on the calculation of Diffie-Hellman problem, it is proved that the scheme can satisfy the indistinguishability of ciphertext and search trapdoor. Finally, the performance analysis shows that the scheme has higher computational efficiency.

Wu, Chuxin, Zhang, Peng, Liu, Hongwei, Liu, Yuhong.  2019.  Multi-keyword Ranked Searchable Encryption Supporting CP-ABE Test. 2019 Computing, Communications and IoT Applications (ComComAp). :220—225.

Internet of Things (IoT) and cloud computing are promising technologies that change the way people communicate and live. As the data collected through IoT devices often involve users' private information and the cloud is not completely trusted, users' private data are usually encrypted before being uploaded to cloud for security purposes. Searchable encryption, allowing users to search over the encrypted data, extends data flexibility on the premise of security. In this paper, to achieve the accurate and efficient ciphertext searching, we present an efficient multi-keyword ranked searchable encryption scheme supporting ciphertext-policy attribute-based encryption (CP-ABE) test (MRSET). For efficiency, numeric hierarchy supporting ranked search is introduced to reduce the dimensions of vectors and matrices. For practicality, CP-ABE is improved to support access right test, so that only documents that the user can decrypt are returned. The security analysis shows that our proposed scheme is secure, and the experimental result demonstrates that our scheme is efficient.

Xiang, Guangli, Li, Beilei, Fu, Xiannong, Xia, Mengsen, Ke, Weiyi.  2019.  An Attribute Revocable CP-ABE Scheme. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :198—203.

Ciphertext storage can effectively solve the security problems in cloud storage, among which the ciphertext policy attribute-based encryption (CP-ABE) is more suitable for ciphertext access control in cloud storage environment for it can achieve one-to-many ciphertext sharing. The existing attribute encryption scheme CP-ABE has problems with revocation such as coarse granularity, untimeliness, and low efficiency, which cannot meet the demands of cloud storage. This paper proposes an RCP-ABE scheme that supports real-time revocable fine-grained attributes for the existing attribute revocable scheme, the scheme of this paper adopts the version control technology to realize the instant revocation of the attributes. In the key update mechanism, the subset coverage technology is used to update the key, which reduces the workload of the authority. The experimental analysis shows that RCP-ABE is more efficient than other schemes.

Rotondi, Domenico, Saltarella, Marco.  2019.  Facing parallel market and counterfeit issues by the combined use of blockchain and CP-ABE encryption technologies. 2019 Global IoT Summit (GIoTS). :1—6.

Blockchains are emerging technologies that propose new business models and value propositions. Besides their application for cryptocurrency purposes, as distributed ledgers of transactions, they enable new ways to provision trusted information in a distributed fashion. In this paper, we present our product tagging solution designed to help Small & Medium Enterprises (SMEs) protect their brands against counterfeit products and parallel markets, as well as to enhance UX (User Experience) and promote the brand and product.Our solution combines the use of DLT to assure, in a verifiable and permanent way, the trustworthiness and confidentiality of the information associated to the goods and the innovative CP-ABE encryption technique to differentiate accessibility to the product's information.

Wu, Zhijun, Xu, Enzhong, Liu, Liang, Yue, Meng.  2019.  CHTDS: A CP-ABE Access Control Scheme Based on Hash Table and Data Segmentation in NDN. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :843—848.

For future Internet, information-centric networking (ICN) is considered a potential solution to many of its current problems, such as content distribution, mobility, and security. Named Data Networking (NDN) is a more popular ICN project. However, concern regarding the protection of user data persists. Information caching in NDN decouples content and content publishers, which leads to content security threats due to lack of secure controls. Therefore, this paper presents a CP-ABE (ciphertext policy attribute based encryption) access control scheme based on hash table and data segmentation (CHTDS). Based on data segmentation, CHTDS uses a method of linearly splitting fixed data blocks, which effectively improves data management. CHTDS also introduces CP-ABE mechanism and hash table data structure to ensure secure access control and privilege revocation does not need to re-encrypt the published content. The analysis results show that CHTDS can effectively realize the security and fine-grained access control in the NDN environment, and reduce communication overhead for content access.

Porwal, Shardha, Mittal, Sangeeta.  2019.  A Flexible Secure Key Delegation Mechanism for CP-ABE with Hidden Access Structure. 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE). :1—6.

Ciphertext Policy Attribute Based Encryption techniques provide fine grained access control to securely share the data in the organizations where access rights of users vary according to their roles. We have noticed that various key delegation mechanisms are provided for CP-ABE schemes but no key delegation mechanism exists for CP-ABE with hidden access policy. In practical, users' identity may be revealed from access policy in the organizations and unlimited further delegations may results in unauthorized data access. For maintaining the users' anonymity, the access structure should be hidden and every user must be restricted for specified further delegations. In this work, we have presented a flexible secure key delegation mechanism for CP-ABE with hidden access structure. The proposed scheme enhances the capability of existing CP-ABE schemes by supporting flexible delegation, attribute revocation and user revocation with negligible enhancement in computational cost.

Sethia, Divyashikha, Shakya, Anadi, Aggarwal, Ritik, Bhayana, Saksham.  2019.  Constant Size CP-ABE with Scalable Revocation for Resource-Constrained IoT Devices. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0951—0957.

Users can directly access and share information from portable devices such as a smartphone or an Internet of Things (IoT) device. However, to prevent them from becoming victims to launch cyber attacks, they must allow selective sharing based on roles of the users such as with the Ciphertext-Policy Attribute Encryption (CP-ABE) scheme. However, to match the resource constraints, the scheme must be efficient for storage. It must also protect the device from malicious users as well as allow uninterrupted access to valid users. This paper presents the CCA secure PROxy-based Scalable Revocation for Constant Cipher-text (C-PROSRCC) scheme, which provides scalable revocation for a constant ciphertext length CP-ABE scheme. The scheme has a constant number of pairings and computations. It can also revoke any number of users and does not require re-encryption or redistribution of keys. We have successfully implemented the C-PROSRCC scheme. The qualitative and quantitative comparison with related schemes indicates that C-PROSRCC performs better with acceptable overheads. C-PROSRCC is Chosen Ciphertext Attack (CCA) secure. We also present a case study to demonstrate the use of C-PROSRCC for mobile-based selective sharing of a family car.

Reshma, V., Gladwin, S. Joseph, Thiruvenkatesan, C..  2019.  Pairing-Free CP-ABE based Cryptography Combined with Steganography for Multimedia Applications. 2019 International Conference on Communication and Signal Processing (ICCSP). :0501—0505.

Technology development has led to rapid increase in demands for multimedia applications. Due to this demand, digital archives are increasingly used to store these multimedia contents. Cloud is the commonly used archive to store, transmit, receive and share multimedia contents. Cloud makes use of internet to perform these tasks due to which data becomes more prone to attacks. Data security and privacy are compromised. This can be avoided by limiting data access to authenticated users and by hiding the data from cloud services that cannot be trusted. Hiding data from the cloud services involves encrypting the data before storing it into the cloud. Data to be shared with other users can be encrypted by utilizing Cipher Text-Policy Attribute Based Encryption (CP-ABE). CP-ABE is used which is a cryptographic technique that controls access to the encrypted data. The pairing-based computation based on bilinearity is used in ABE due to which the requirements for resources like memory and power supply increases rapidly. Most of the devices that we use today have limited memory. Therefore, an efficient pairing free CP- ABE access control scheme using elliptic curve cryptography has been used. Pairing based computation is replaced with scalar product on elliptic curves that reduces the necessary memory and resource requirements for the users. Even though pairing free CP-ABE is used, it is easier to retrieve the plaintext of a secret message if cryptanalysis is used. Therefore, this paper proposes to combine cryptography with steganography in such a way by embedding crypto text into an image to provide increased level of data security and data ownership for sub-optimal multimedia applications. It makes it harder for a cryptanalyst to retrieve the plaintext of a secret message from a stego-object if steganalysis were not used. This scheme significantly improved the data security as well as data privacy.

Tan, Syh-Yuan, Yeow, Kin-Woon, Hwang, Seong Oun.  2019.  Enhancement of a Lightweight Attribute-Based Encryption Scheme for the Internet of Things. IEEE Internet of Things Journal. 6:6384—6395.

In this paper, we present the enhancement of a lightweight key-policy attribute-based encryption (KP-ABE) scheme designed for the Internet of Things (IoT). The KP-ABE scheme was claimed to achieve ciphertext indistinguishability under chosen-plaintext attack in the selective-set model but we show that the KP-ABE scheme is insecure even in the weaker security notion, namely, one-way encryption under the same attack and model. In particular, we show that an attacker can decrypt a ciphertext which does not satisfy the policy imposed on his decryption key. Subsequently, we propose an efficient fix to the KP-ABE scheme as well as extending it to be a hierarchical KP-ABE (H-KP-ABE) scheme that can support role delegation in IoT applications. An example of applying our H-KP-ABE on an IoT-connected healthcare system is given to highlight the benefit of the delegation feature. Lastly, using the NIST curves secp192k1 and secp256k1, we benchmark the fixed (hierarchical) KP-ABE scheme on an Android phone and the result shows that the scheme is still the fastest in the literature.

Li, Qi, Ma, Jianfeng, Xiong, Jinbo, Zhang, Tao, Liu, Ximeng.  2013.  Fully Secure Decentralized Key-Policy Attribute-Based Encryption. 2013 5th International Conference on Intelligent Networking and Collaborative Systems. :220—225.

In previous multi-authority key-policy attribute-based Encryption (KP-ABE) schemes, either a super power central authority (CA) exists, or multiple attribute authorities (AAs) must collaborate in initializing the system. In addition, those schemes are proved security in the selective model. In this paper, we propose a new fully secure decentralized KP-ABE scheme, where no CA exists and there is no cooperation between any AAs. To become an AA, a participant needs to create and publish its public parameters. All the user's private keys will be linked with his unique global identifier (GID). The proposed scheme supports any monotonic access structure which can be expressed by a linear secret sharing scheme (LSSS). We prove the full security of our scheme in the standard model. Our scheme is also secure against at most F-1 AAs corruption, where F is the number of AAs in the system. The efficiency of our scheme is almost as well as that of the underlying fully secure single-authority KP-ABE system.

Huo, Weiqian, Pei, Jisheng, Zhang, Ke, Ye, Xiaojun.  2014.  KP-ABE with Attribute Extension: Towards Functional Encryption Schemes Integration. 2014 Sixth International Symposium on Parallel Architectures, Algorithms and Programming. :230—237.

To allow fine-grained access control of sensitive data, researchers have proposed various types of functional encryption schemes, such as identity-based encryption, searchable encryption and attribute-based encryption. We observe that it is difficult to define some complex access policies in certain application scenarios by using these schemes individually. In this paper, we attempt to address this problem by proposing a functional encryption approach named Key-Policy Attribute-Based Encryption with Attribute Extension (KP-ABE-AE). In this approach, we utilize extended attributes to integrate various encryption schemes that support different access policies under a common top-level KP-ABE scheme, thus expanding the scope of access policies that can be defined. Theoretical analysis and experimental studies are conducted to demonstrate the applicability of the proposed KP-ABE-AE. We also present an optimization for a special application of KP-ABE-AE where IPE schemes are integrated with a KP-ABE scheme. The optimization results in an integrated scheme with better efficiency when compared to the existing encryption schemes that support the same scope of access policies.

Wang, Jinmiao, Lang, Bo.  2016.  An efficient KP-ABE scheme for content protection in Information-Centric Networking. 2016 IEEE Symposium on Computers and Communication (ISCC). :830—837.

Media streaming has largely dominated the Internet traffic and the trend will keep increasing in the next years. To efficiently distribute the media content, Information-Centric Networking (ICN) has attracted many researchers. Since end users usually obtain content from indeterminate caches in ICN, the publisher cannot reinforce data security and access control depending on the caches. Hence, the ability of self-contained protection is important for the cached contents. Attribute-based encryption (ABE) is considered the preferred solution to achieve this goal. However, the existing ABE schemes usually have problems regarding efficiency. The exponentiation in key generation and pairing operation in decryption respectively increases linearly with the number of attributes involved, which make it costly. In this paper, we propose an efficient key-policy ABE with fast key generation and decryption (FKP-ABE). In the key generation, we get rid of exponentiation and only require multiplications/divisions for each attribute in the access policy. And in the decryption, we reduce the pairing operations to a constant number, no matter how many attributes are used. The efficiency analysis indicates that our scheme has better performance than the existing KP-ABE schemes. Finally, we present an implementation framework that incorporates the proposed FKP-ABE with the ICN architecture.

Touati, Lyes, Challal, Yacine.  2016.  Collaborative KP-ABE for cloud-based Internet of Things applications. 2016 IEEE International Conference on Communications (ICC). :1—7.

KP-ABE mechanism emerges as one of the most suitable security scheme for asymmetric encryption. It has been widely used to implement access control solutions. However, due to its expensive overhead, it is difficult to consider this cryptographic scheme in resource-limited networks, such as the IoT. As the cloud has become a key infrastructural support for IoT applications, it is interesting to exploit cloud resources to perform heavy operations. In this paper, a collaborative variant of KP-ABE named C-KP-ABE for cloud-based IoT applications is proposed. Our proposal is based on the use of computing power and storage capacities of cloud servers and trusted assistant nodes to run heavy operations. A performance analysis is conducted to show the effectiveness of the proposed solution.

Touati, Lyes.  2017.  Grouping-Proofs Based Access Control Using KP-ABE for IoT Applications. 2017 IEEE Trustcom/BigDataSE/ICESS. :301—308.

The Internet of Things (IoT) is a new paradigm in which every-day objects are interconnected between each other and to the Internet. This paradigm is receiving much attention of the scientific community and it is applied in many fields. In some applications, it is useful to prove that a number of objects are simultaneously present in a group. For example, an individual might want to authorize NFC payment with his mobile only if k of his devices are present to ensure that he is the right person. This principle is known as Grouping-Proofs. However, existing Grouping-Proofs schemes are mostly designed for RFID systems and don't fulfill the IoT characteristics. In this paper, we propose a Threshold Grouping-Proofs for IoT applications. Our scheme uses the Key-Policy Attribute-Based Encryption (KP-ABE) protocol to encrypt a message so that it can be decrypted only if at least k objects are simultaneously present in the same location. A security analysis and performance evaluation is conducted to show the effectiveness of our proposal solution.