Barbeau, Michel, Cuppens, Frédéric, Cuppens, Nora, Dagnas, Romain, Garcia-Alfaro, Joaquin.
2021.
Resilience Estimation of Cyber-Physical Systems via Quantitative Metrics. IEEE Access. 9:46462–46475.
This paper is about the estimation of the cyber-resilience of CPS. We define two new resilience estimation metrics: k-steerability and l-monitorability. They aim at assisting designers to evaluate and increase the cyber-resilience of CPS when facing stealthy attacks. The k-steerability metric reflects the ability of a controller to act on individual plant state variables when, at least, k different groups of functionally diverse input signals may be processed. The l-monitorability metric indicates the ability of a controller to monitor individual plant state variables with l different groups of functionally diverse outputs. Paired together, the metrics lead to CPS reaching (k,l)-resilience. When k and l are both greater than one, a CPS can absorb and adapt to control-theoretic attacks manipulating input and output signals. We also relate the parameters k and l to the recoverability of a system. We define recoverability strategies to mitigate the impact of perpetrated attacks. We show that the values of k and l can be augmented by combining redundancy and diversity in hardware and software, in order to apply the moving target paradigm. We validate the approach via simulation and numeric results.
Conference Name: IEEE Access
Bouk, Safdar Hussain, Ahmed, Syed Hassan, Hussain, Rasheed, Eun, Yongsoon.
2018.
Named Data Networking's Intrinsic Cyber-Resilience for Vehicular CPS. IEEE Access. 6:60570–60585.
Modern vehicles equipped with a large number of electronic components, sensors, actuators, and extensive connectivity, are the classical example of cyber-physical systems (CPS). Communication as an integral part of the CPS has enabled and offered many value-added services for vehicular networks. The communication mechanism helps to share contents with all vehicular network nodes and the surrounding environment, e.g., vehicles, traffic lights, and smart road signs, to efficiently take informed and smart decisions. Thus, it opens the doors to many security threats and vulnerabilities. Traditional TCP/IP-based communication paradigm focuses on securing the communication channel instead of the contents that travel through the network. Nevertheless, for content-centered application, content security is more important than communication channel security. To this end, named data networking (NDN) is one of the future Internet architectures that puts the contents at the center of communication and offers embedded content security. In this paper, we first identify the cyberattacks and security challenges faced by the vehicular CPS (VCPS). Next, we propose the NDN-based cyber-resilient, the layered and modular architecture for VCPS. The architecture includes the NDN's forwarding daemon, threat aversion, detection, and resilience components. A detailed discussion about the functionality of each component is also presented. Furthermore, we discuss the future challenges faced by the integration of NDN with VCPS to realize NDN-based VCPS.
Conference Name: IEEE Access
Keshk, Marwa, Turnbull, Benjamin, Sitnikova, Elena, Vatsalan, Dinusha, Moustafa, Nour.
2021.
Privacy-Preserving Schemes for Safeguarding Heterogeneous Data Sources in Cyber-Physical Systems. IEEE Access. 9:55077–55097.
Cyber-Physical Systems (CPS) underpin global critical infrastructure, including power, water, gas systems and smart grids. CPS, as a technology platform, is unique as a target for Advanced Persistent Threats (APTs), given the potentially high impact of a successful breach. Additionally, CPSs are targets as they produce significant amounts of heterogeneous data from the multitude of devices and networks included in their architecture. It is, therefore, essential to develop efficient privacy-preserving techniques for safeguarding system data from cyber attacks. This paper introduces a comprehensive review of the current privacy-preserving techniques for protecting CPS systems and their data from cyber attacks. Concepts of Privacy preservation and CPSs are discussed, demonstrating CPSs' components and the way these systems could be exploited by either cyber and physical hacking scenarios. Then, classification of privacy preservation according to the way they would be protected, including perturbation, authentication, machine learning (ML), cryptography and blockchain, are explained to illustrate how they would be employed for data privacy preservation. Finally, we show existing challenges, solutions and future research directions of privacy preservation in CPSs.
Conference Name: IEEE Access