Arshad, Akashah, Hanapi, Zurina Mohd, Subramaniam, Shamala K., Latip, Rohaya.
2019.
Performance Evaluation of the Geographic Routing Protocols Scalability. 2019 International Conference on Information Networking (ICOIN). :396–398.
Scalability is an important design factor for evaluating the performance of routing protocols as the network size or traffic load increases. One of the most appropriate design methods is to use geographic routing approach to ensure scalability. This paper describes a scalability study comparing Secure Region Based Geographic Routing (SRBGR) and Dynamic Window Secure Implicit Geographic Forwarding (DWSIGF) protocols in various network density scenarios based on an end-to-end delay performance metric. The simulation studies were conducted in MATLAB 2106b where the network densities were varied according to the network topology size with increasing traffic rates. The results showed that DWSIGF has a lower end-to-end delay as compared to SRBGR for both sparse (15.4%) and high density (63.3%) network scenarios.Despite SRBGR having good security features, there is a need to improve the performance of its end-to-end delay to fulfil the application requirements.
Belej, Olexander, Nestor, Natalia, Polotai, Orest, Sadeckii, Jan.
2019.
Features of Application of Data Transmission Protocols in Wireless Networks of Sensors. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :317–322.
This article discusses the vulnerabilities and complexity of designing secure IoT-solutions, and then presents proven approaches to protecting devices and gateways. Specifically, security mechanisms such as device authentication (including certificate-based authentication), device authentication, and application a verification of identification are described. The authors consider a protocol of message queue telemetry transport for speech and sensor networks on the Internet, its features, application variants, and characteristic procedures. The principle of "publishersubscriber" is considered. An analysis of information elements and messages is carried out. The urgency of the theme is due to the rapid development of "publisher-subscriber" architecture, for which the protocol is most characteristic.
Biswal, Satya Ranjan, Swain, Santosh Kumar.
2019.
Model for Study of Malware Propagation Dynamics in Wireless Sensor Network. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :647–653.
Wireless Sensor Network (WSN) faces critical security challenges due to malware(worm, virus, malicious code etc.) attack. When a single node gets compromised by malware then start to spread in entire sensor network through neighboring sensor nodes. To understand the dynamics of malware propagation in WSN proposed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model. This model used the concept of epidemiology. The model focused on early detection of malicious signals presence in the network and accordingly application of security mechanism for its removal. The early detection method helps in controlling of malware spread and reduce battery consumption of sensor nodes. In this paper study the dynamics of malware propagation and stability analysis of the system. In epidemiology basic reproduction number is a crucial parameter which is used for the determination of malware status in the system. The expression of basic reproduction number has been obtained. Analyze the propagation dynamics and compared with previous model. The proposed model provides improved security mechanism in comparison to previous one. The extensive simulation results conform the analytical investigation and accuracy of proposed model.
Alsumayt, Albandari, Albawardy, Norah, Aldossary, Wejdan, Alghamdi, Ebtehal, Aljammaz, Aljawhra.
2019.
Improve the security over the wireless sensor networks in medical sector. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Nowadays with the huge technological development, the reliance on technology has become enormous. Wireless Sensor Networks (WSN) is an example of using the Internet and communication between the patient and the hospital. Easy use of such networks helps to increase the quality of communication between patient and hospital. With the development of technology increased risk in use. Any change in this data between the patient and the hospital may cause false data that may harm the patient. In this paper, a secure protocol is designed to ensure the confidentiality, integrity, and availability of data transfer between the hospital and the patient, depending on the AES and RC4 algorithms.
Marchang, Jims, Ibbotson, Gregg, Wheway, Paul.
2019.
Will Blockchain Technology Become a Reality in Sensor Networks? 2019 Wireless Days (WD). :1–4.
The need for sensors to deliver, communicate, collect, alert, and share information in various applications has made wireless sensor networks very popular. However, due to its limited resources in terms of computation power, battery life and memory storage of the sensor nodes, it is challenging to add security features to provide the confidentiality, integrity, and availability. Blockchain technology ensures security and avoids the need of any trusted third party. However, applying Blockchain in a resource-constrained wireless sensor network is a challenging task because Blockchain is power, computation, and memory hungry in nature and demands heavy bandwidth due to control overheads. In this paper, a new routing and a private communication Blockchain framework is designed and tested with Constant Bit rate (CBR). The proposed Load Balancing Multi-Hop (LBMH) routing shares and enhances the battery life of the Cluster Heads and reduce control overhead during Block updates, but due to limited storage and energy of the sensor nodes, Blockchain in sensor networks may never become a reality unless computation, storage and battery life are readily available at low cost.
Johnson, Ashley, Molloy, Joseph, Yunes, Jonathan, Puthuparampil, Joseph, Elleithy, Abdelrahman.
2019.
Security in Wireless Sensors Networks. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–3.
Many routing mechanisms of the wireless sensor network have been suggested in the literature, but there has not been a successful one that was designed with security. In this paper, we discuss the vulnerabilities of wireless sensor networks, how attackers can exploit these vulnerabilities, and the solutions to defend against these attacks. Furthermore, we will suggest solutions and measures secure routing mechanisms in sensor networks and study how it will affect it positively.
Lin, Yun, Chang, Jie.
2019.
Improving Wireless Network Security Based On Radio Fingerprinting. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :375–379.
With the rapid development of the popularity of wireless networks, there are also increasing security threats that follow, and wireless network security issues are becoming increasingly important. Radio frequency fingerprints generated by device tolerance in wireless device transmitters have physical characteristics that are difficult to clone, and can be used for identity authentication of wireless devices. In this paper, we propose a radio frequency fingerprint extraction method based on fractional Fourier transform for transient signals. After getting the features of the signal, we use RPCA to reduce the dimension of the features, and then use KNN to classify them. The results show that when the SNR is 20dB, the recognition rate of this method is close to 100%.
Jyothi, R., Cholli, Nagaraj G..
2019.
New Approach to Secure Cluster Heads in Wireless Sensor Networks. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :1097–1101.
This Wireless Sensor Network is a network of devices that communicates the information gathered from a monitored field through wireless links. Small size sensor nodes constitute wireless sensor networks. A Sensor is a device that responds and detects some type of input from both the physical or environmental conditions, such as pressure, heat, light, etc. Applications of wireless sensor networks include home automation, street lighting, military, healthcare and industrial process monitoring. As wireless sensor networks are distributed across large geographical area, these are vulnerable to various security threats. This affects the performance of the wireless sensor networks. The impact of security issues will become more critical if the network is used for mission-critical applications like tactical battlefield. In real life deployment scenarios, the probability of failure of nodes is more. As a result of resource constraints in the sensor nodes, traditional methods which involve large overhead computation and communication are not feasible in WSNs. Hence, design and deployment of secured WSNs is a challenging task. Attacks on WSNs include attack on confidentiality, integrity and availability. There are various types of architectures that are used to deploy WSNs. Some of them are data centric, hierarchical, location based, mobility based etc. This work discusses the security issue of hierarchical architecture and proposes a solution. In hierarchical architectures, sensor nodes are grouped to form clusters. Intra-cluster communication happens through cluster heads. Cluster heads also facilitate inter-cluster communication with other cluster heads. Aggregation of data generated by sensor nodes is done by cluster heads. Aggregated data also get transferred to base through multi-hop approach in most cases. Cluster heads are vulnerable to various malicious attacks and this greatly affects the performance of the wireless sensor network. The proposed solution identifies attacked cluster head and changes the CH by identifying the fittest node using genetic algorithm based search.
Yapar, Büşranur, Güven, Ebu Yusuf, Aydın, Muhammed Ali.
2019.
Security on Wireless Sensor Network. 2019 4th International Conference on Computer Science and Engineering (UBMK). :693–698.
Wireless sensor networks are called wireless networks consisting of low-cost sensor nodes that use limited resources, collect and distribute data. Wireless sensor networks make observation and control of physical environments from distance easier. They are used in a variety of areas, such as environmental surveillance, military purposes, and the collection of information in specific areas. While the low cost of sensor nodes allows it to spread and increase it's quantitative, battery and computational constraints, noise and manipulation threats from the environment cause various challenges in wireless sensor applications. To overcome these challenges, researches have conducted a lot of researches on various fields like power consumption, use of resources and security approaches. In these studies, routing, placement algorithms and system designs are generally examined for efficient energy consumption. In this article, the relationship between the security of sensor networks and efficient resource usage and various scenarios are presented.
Alfaleh, Faleh, Alfehaid, Haitham, Alanzy, Mohammed, Elkhediri, Salim.
2019.
Wireless Sensor Networks Security: Case study. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Wireless Sensor Networks (WSNs) are important and becoming more important as we integrate wireless sensor networks and the internet with different things, which has changed our life, and it is affected everywhere in our life like shopping, storage, live monitoring, smart home etc., called Internet of Things (IoT), as any use of the network physical devices that included in electronics, software, sensors, actuators, and connectivity which makes available these things to connect, collect and exchange data, and the most importantly thing is the accuracy of the data that has been collected in the Internet of Things, detecting sensor data with faulty readings is an important issue of secure communication and power consumption. So, requirement of energy-efficiency and integrity of information is mandatory.
Siasi, Nazli, Aldalbahi, Adel, Jasim, Mohammed A..
2019.
Reliable Transmission Scheme Against Security Attacks in Wireless Sensor Networks. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Routing protocols in wireless sensor network are vulnerable to various malicious security attacks that can degrade network performance and lifetime. This becomes more important in cluster routing protocols that is composed of multiple node and cluster head, such as low energy adaptive clustering hierarchy (LEACH) protocol. Namely, if an attack succeeds in failing the cluster head, then the entire set of nodes fail. Therefore, it is necessary to develop robust recovery schemes to overcome security attacks and recover packets at short times. Hence this paper proposes a detection and recovery scheme for selective forwarding attacks in wireless sensor networks using LEACH protocol. The proposed solution features near-instantaneous recovery times, without the requirement for feedback or retransmissions once an attack occurs.