Visible to the public Biblio

Found 441 results

Filters: Keyword is Wireless sensor networks  [Clear All Filters]
2020-06-01
Ansari, Abdul Malik, Hussain, Muzzammil.  2018.  Middleware Based Node Authentication Framework for IoT Networks. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :31–35.
Security and protection are among the most squeezing worries that have developed with the Internet. As systems extended and turned out to be more open, security hones moved to guarantee insurance of the consistently developing Internet, its clients, and information. Today, the Internet of Things (IoT) is rising as another sort of system that associates everything to everybody, all over. Subsequently, the edge of resistance for security and protection moves toward becoming smaller on the grounds that a break may prompt vast scale irreversible harm. One element that eases the security concerns is validation. While diverse confirmation plans are utilized as a part of vertical system storehouses, a typical personality and validation plot is expected to address the heterogeneity in IoT and to coordinate the distinctive conventions exhibit in IoT. In this paper, a light weight secure framework is proposed. The proposed framework is analyzed for performance with security mechanism and found to be better over critical parameters.
Alshinina, Remah, Elleithy, Khaled.  2018.  A highly accurate machine learning approach for developing wireless sensor network middleware. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications, security problems associated with them have not been completely resolved. Middleware is generally introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of the existing middleware is unable to protect data from malicious and unknown attacks during transmission. This paper introduces an intelligent middleware based on an unsupervised learning technique called Generative Adversarial Networks (GANs) algorithm. GANs contain two networks: a generator (G) network and a detector (D) network. The G creates fake data similar to the real samples and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers that have the ability to differentiate between real and fake data. The output intended for this algorithm shows an actual interpretation of the data that is securely communicated through the WSN. The framework is implemented in Python with experiments performed using Keras. Results illustrate that the suggested algorithm not only improves the accuracy of the data but also enhances its security by protecting data from adversaries. Data transmission from the WSN to the end user then becomes much more secure and accurate compared to conventional techniques.
2020-05-15
Lebiednik, Brian, Abadal, Sergi, Kwon, Hyoukjun, Krishna, Tushar.  2018.  Architecting a Secure Wireless Network-on-Chip. 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :1—8.

With increasing integration in SoCs, the Network-on-Chip (NoC) connecting cores and accelerators is of paramount importance to provide low-latency and high-throughput communication. Due to limits to scaling of electrical wires in terms of energy and delay, especially for long multi-mm distances on-chip, alternate technologies such as Wireless Network-on-Chip (WNoC) have shown promise. WNoCs can provide low-latency one-hop broadcasts across the entire chip and can augment point-to-point multi-hop signaling over traditional wired NoCs. Thus, there has been a recent surge in research demonstrating the performance and energy benefits of WNoCs. However, little to no work has studied the additional security and fault tolerance challenges that are unique to WNoCs. In this work, we study potential threats related to denial-of-service, spoofing, and eavesdropping attacks in WNoCs, due to malicious hardware trojans or faulty wireless components. We introduce Prometheus, a dropin solution inside the network interface that provides protection from all three attacks, while adhering to the strict area, power and latency constraints of on-chip systems.

2020-05-11
Chandre, Pankaj Ramchandra, Mahalle, Parikshit Narendra, Shinde, Gitanjali Rahul.  2018.  Machine Learning Based Novel Approach for Intrusion Detection and Prevention System: A Tool Based Verification. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :135–140.
Now a day, Wireless Sensor Networks are widely used in military applications by its applications, it is extended to healthcare, industrial environments and many more. As we know that, there are some unique features of WSNs such as limited power supply, minimum bandwidth and limited energy. So, to secure traditional network, multiple techniques are available, but we can't use same techniques to secure WSNs. So to increase the overall security of WSNs, we required new ideas as well as new approaches. In general, intrusion prevention is the primary issue in WSNs and intrusion detection already reached to saturation. Thus, we need an efficient solution for proactive intrusion prevention towards WSNs. Thus, formal validation of protocols in WSN is an essential area of research. This research paper aims to formally verify as well as model some protocol used for intrusion detection using AVISPA tool and HLPSL language. In this research paper, the results of authentication and DoS attacks were detected is presented, but there is a need to prevent such type of attacks. In this research paper, a system is proposed in order to avoid intrusion using machine learning for the wireless sensor network. So, the proposed system will be used for intrusion prevention in a wireless sensor network.
Vashist, Abhishek, Keats, Andrew, Pudukotai Dinakarrao, Sai Manoj, Ganguly, Amlan.  2019.  Securing a Wireless Network-on-Chip Against Jamming Based Denial-of-Service Attacks. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :320–325.
Wireless Networks-on-Chips (NoCs) have emerged as a panacea to the non-scalable multi-hop data transmission paths in traditional wired NoC architectures. Using low-power transceivers in NoC switches, novel Wireless NoC (WiNoC) architectures have been shown to achieve higher energy efficiency with improved peak bandwidth and reduced on-chip data transfer latency. However, using wireless interconnects for data transfer within a chip makes the on-chip communications vulnerable to various security threats from either external attackers or internal hardware Trojans (HTs). In this work, we propose a mechanism to make the wireless communication in a WiNoC secure against persistent jamming based Denial-of-Service attacks from both external and internal attackers. Persistent jamming attacks on the on-chip wireless medium will cause interference in data transfer over the duration of the attack resulting in errors in contiguous bits, known as burst errors. Therefore, we use a burst error correction code to monitor the rate of burst errors received over the wireless medium and deploy a Machine Learning (ML) classifier to detect the persistent jamming attack and distinguish it from random burst errors. In the event of jamming attack, alternate routing strategies are proposed to avoid the DoS attack over the wireless medium, so that a secure data transfer can be sustained even in the presence of jamming. We evaluate the proposed technique on a secure WiNoC in the presence of DoS attacks. It has been observed that with the proposed defense mechanisms, WiNoC can outperform a wired NoC even in presence of attacks in terms of performance and security. On an average, 99.87% attack detection was achieved with the chosen ML Classifiers. A bandwidth degradation of \textbackslashtextless;3% is experienced in the event of internal attack, while the wireless interconnects are disabled in the presence of an external attacker.
2020-05-08
Shen, Weiguo, Wang, Wei.  2018.  Node Identification in Wireless Network Based on Convolutional Neural Network. 2018 14th International Conference on Computational Intelligence and Security (CIS). :238—241.
Aiming at the problem of node identification in wireless networks, a method of node identification based on deep learning is proposed, which starts with the tiny features of nodes in radiofrequency layer. Firstly, in order to cut down the computational complexity, Principal Component Analysis is used to reduce the dimension of node sample data. Secondly, a convolution neural network containing two hidden layers is designed to extract local features of the preprocessed data. Stochastic gradient descent method is used to optimize the parameters, and the Softmax Model is used to determine the output label. Finally, the effectiveness of the method is verified by experiments on practical wireless ad-hoc network.
2020-04-24
Zhang, Lichen.  2018.  Modeling Cloud Based Cyber Physical Systems Based on AADL. 2018 24th International Conference on Automation and Computing (ICAC). :1—6.

Cloud-based cyber-physical systems, like vehicle and intelligent transportation systems, are now attracting much more attentions. These systems usually include large-scale distributed sensor networks covering various components and producing enormous measurement data. Lots of modeling languages are put to use for describing cyber-physical systems or its aspects, bringing contribution to the development of cyber-physical systems. But most of the modeling techniques only focuse on software aspect so that they could not exactly express the whole cloud-based cyber-physical systems, which require appropriate views and tools in its design; but those tools are hard to be used under systemic or object-oriented methods. For example, the widest used modeling language, UML, could not fulfil the above design's requirements by using the foremer's standard form. This paper presents a method designing the cloud-based cyber-physical systems with AADL, by which we can analyse, model and apply those requirements on cloud platforms ensuring QoS in a relatively highly extensible way at the mean time.

2020-04-20
Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2018.  PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1316–1320.
We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2018.  PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1316–1320.
We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
2020-04-10
Srinu, Sesham, Reddy, M. Kranthi Kumar, Temaneh-Nyah, Clement.  2019.  Physical layer security against cooperative anomaly attack using bivariate data in distributed CRNs. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :410—413.
Wireless communication network (WCN) performance is primarily depends on physical layer security which is critical among all other layers of OSI network model. It is typically prone to anomaly/malicious user's attacks owing to openness of wireless channels. Cognitive radio networking (CRN) is a recently emerged wireless technology that is having numerous security challenges because of its unlicensed access of wireless channels. In CRNs, the security issues occur mainly during spectrum sensing and is more pronounced during distributed spectrum sensing. In recent past, various anomaly effects are modelled and developed detectors by applying advanced statistical techniques. Nevertheless, many of these detectors have been developed based on sensing data of one variable (energy measurement) and degrades their performance drastically when the data is contaminated with multiple anomaly nodes, that attack the network cooperatively. Hence, one has to develop an efficient multiple anomaly detection algorithm to eliminate all possible cooperative attacks. To achieve this, in this work, the impact of anomaly on detection probability is verified beforehand in developing an efficient algorithm using bivariate data to detect possible attacks with mahalanobis distance measure. Result discloses that detection error of cooperative attacks by anomaly has significant impact on eigenvalue-based sensing.
2020-04-06
Demir, Mehmet özgÜn, Kurty, GÜne Karabulut, Dartmannz, Guido, Ascheidx, Gerd, Pusane, Ali Emre.  2018.  Security Analysis of Forward Error Correction Codes in Relay Aided Networks. 2018 Global Information Infrastructure and Networking Symposium (GIIS). :1–5.

Network security and data confidentiality of transmitted information are among the non-functional requirements of industrial wireless sensor networks (IWSNs) in addition to latency, reliability and energy efficiency requirements. Physical layer security techniques are promising solutions to assist cryptographic methods in the presence of an eavesdropper in IWSN setups. In this paper, we propose a physical layer security scheme, which is based on both insertion of an random error vector to forward error correction (FEC) codewords and transmission over decentralized relay nodes. Reed-Solomon and Golay codes are selected as FEC coding schemes and the security performance of the proposed model is evaluated with the aid of decoding error probability of an eavesdropper. The results show that security level is highly based on the location of the eavesdropper and secure communication can be achieved when some of channels between eavesdropper and relay nodes are significantly noisier.

Wang, Zhi-Hao, Kung, Yu-Fan, Hendrick, Cheng, Po-Jen, Wang, Chih-Min, Jong, Gwo-Jia.  2018.  Enhance Wireless Security System Using Butterfly Network Coding Algorithm. 2018 International Conference on Applied Information Technology and Innovation (ICAITI). :135–138.
The traditional security system requires a lot of manpower, and the wireless security system has been developed to reduce costs. However, for wireless systems, stability and reliability are important system indicators. In order to effectively improve these two indicators, we have imported butterfly network coding algorithm into the wireless sensing network. Because this algorithm enables each node to play multiple roles, such as routing, encoding, decoding, sending and receiving, it can also improve the throughput of network transmission, and effectively improve the stability and reliability of the wireless security system. This paper used the Wi-Fi module to implement the butterfly network coding algorithm, and is actually installed in the building. The basis for transmission and reception of all nodes in the network is received signal strength indication (RSSI). On the other hand, this is an IoT system for security monitoring.
2020-04-03
Hirose, Shoichi, Shikata, Junji.  2019.  Provable Security of the Ma-Tsudik Forward-Secure Sequential Aggregate MAC Scheme. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :327—332.
Considering application to communication among wireless sensors, Ma and Tsudik introduced the notion of forward-secure sequential aggregate (FssAgg) authentication in 2007. They also proposed an FssAgg MAC scheme composed of a MAC function and cryptographic hash functions at the same time. The security of their proposed scheme has not been analyzed yet and remains open. It is shown in this paper that a slight variant of the Ma-Tsudik FssAgg MAC scheme is secure under reasonable and standard assumptions on security of the underlying primitives. An efficient instantiation of the underlying MAC function using a cryptographic hash function is also discussed.
Nandi, Giann Spilere, Pereira, David, Vigil, Martín, Moraes, Ricardo, Morales, Analúcia Schiaffino, Araújo, Gustavo.  2019.  Security in Wireless Sensor Networks: A formal verification of protocols. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:425—431.

The increase of the digitalization taking place in various industrial domains is leading developers towards the design and implementation of more and more complex networked control systems (NCS) supported by Wireless Sensor Networks (WSN). This naturally raises new challenges for the current WSN technology, namely in what concerns improved guarantees of technical aspects such as real-time communications together with safe and secure transmissions. Notably, in what concerns security aspects, several cryptographic protocols have been proposed. Since the design of these protocols is usually error-prone, security breaches can still be exposed and MALICIOUSly exploited unless they are rigorously analyzed and verified. In this paper we formally verify, using ProVerif, three cryptographic protocols used in WSN, regarding the security properties of secrecy and authenticity. The security analysis performed in this paper is more robust than the ones performed in related work. Our contributions involve analyzing protocols that were modeled considering an unbounded number of participants and actions, and also the use of a hierarchical system to classify the authenticity results. Our verification shows that the three analyzed protocols guarantee secrecy, but can only provide authenticity in specific scenarios.

2020-03-30
Heigl, Michael, Schramm, Martin, Fiala, Dalibor.  2019.  A Lightweight Quantum-Safe Security Concept for Wireless Sensor Network Communication. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :906–911.

The ubiquitous internetworking of devices in all areas of life is boosted by various trends for instance the Internet of Things. Promising technologies that can be used for such future environments come from Wireless Sensor Networks. It ensures connectivity between distributed, tiny and simple sensor nodes as well as sensor nodes and base stations in order to monitor physical or environmental conditions such as vibrations, temperature or motion. Security plays an increasingly important role in the coming decades in which attacking strategies are becoming more and more sophisticated. Contemporary cryptographic mechanisms face a great threat from quantum computers in the near future and together with Intrusion Detection Systems are hardly applicable on sensors due to strict resource constraints. Thus, in this work a future-proof lightweight and resource-aware security concept for sensor networks with a processing stage permeated filtering mechanism is proposed. A special focus in the concepts evaluation lies on the novel Magic Number filter to mitigate a special kind of Denial-of-Service attack performed on CC1350 LaunchPad ARM Cortex-M3 microcontroller boards.

2020-03-23
Alaoui, Sadek Belamfedel, El Houssaine, Tissir, Noreddine, Chaibi.  2019.  Modelling, analysis and design of active queue management to mitigate the effect of denial of service attack in wired/wireless network. 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–7.
Mitigating the effect of Distributed Denial of Service (DDoS) attacks in wired/wireless networks is a problem of extreme importance. The present paper investigates this problem and proposes a secure AQM to encounter the effects of DDoS attacks on queue's router. The employed method relies on modelling the TCP/AQM system subjected to different DoS attack rate where the resulting closed-loop system is expressed as new Markovian Jump Linear System (MJLS). Sufficient delay-dependent conditions which guarantee the syntheses of a stabilizing control for the closed-loop system with a guaranteed cost J* are derived. Finally, a numerical example is displayed.
2020-03-09
Xiaoxin, LOU, Xiulan, SONG, Defeng, HE, Liming, MENG.  2019.  Secure estimation for intelligent connected vehicle systems against sensor attacks. 2019 Chinese Control Conference (CCC). :6658–6662.
Intelligent connected vehicle system tightly integrates computing, communication, and control strategy. It can increase the traffic throughput, minimize the risk of accidents and reduce the energy consumption. However, because of the openness of the vehicular ad hoc network, the system is vulnerable to cyber-attacks and may result in disastrous consequences. Hence, it is interesting in design of the connected vehicular systems to be resilient to the sensor attacks. The paper focuses on the estimation and control of the intelligent connected vehicle systems when the sensors or the wireless channels of the system are attacked by attackers. We give the upper bound of the corrupted sensors that can be corrected and design the state estimator to reconstruct the initial state by designing a closed-loop controller. Finally, we verify the algorithm for the connected vehicle system by some classical simulations.
2020-03-02
Wheeler, Thomas, Bharathi, Ezhil, Gil, Stephanie.  2019.  Switching Topology for Resilient Consensus Using Wi-Fi Signals. 2019 International Conference on Robotics and Automation (ICRA). :2018–2024.

Securing multi-robot teams against malicious activity is crucial as these systems accelerate towards widespread societal integration. This emerging class of ``physical networks'' requires research into new methods of security that exploit their physical nature. This paper derives a theoretical framework for securing multi-agent consensus against the Sybil attack by using the physical properties of wireless transmissions. Our frame-work uses information extracted from the wireless channels to design a switching signal that stochastically excludes potentially untrustworthy transmissions from the consensus. Intuitively, this amounts to selectively ignoring incoming communications from untrustworthy agents, allowing for consensus to the true average to be recovered with high probability if initiated after a certain observation time T0 that we derive. This work is different from previous work in that it allows for arbitrary malicious node values and is insensitive to the initial topology of the network so long as a connected topology over legitimate nodes in the network is feasible. We show that our algorithm will recover consensus and the true graph over the system of legitimate agents with an error rate that vanishes exponentially with time.

Ali, Waqas, Abbas, Ghulam, Abbas, Ziaul Haq.  2019.  Joint Sybil Attack Prevention and Energy Conservation in Wireless Sensor Networks. 2019 International Conference on Frontiers of Information Technology (FIT). :179–1795.

Sybil attacks, wherein a network is subverted by forging node identities, remains an open issue in wireless sensor networks (WSNs). This paper proposes a scheme, called Location and Communication ID (LCID) based detection, which employs residual energy, communication ID and location information of sensor nodes for Sybil attacks prevention. Moreover, LCID takes into account the resource constrained nature of WSNs and enhances energy conservation through hierarchical routing. Sybil nodes are purged before clusters formation to ensure that only legitimate nodes participate in clustering and data communication. CH selection is based on the average energy of the entire network to load-balance energy consumption. LCID selects a CH if its residual energy is greater than the average network energy. Furthermore, the workload of CHs is equally distributed among sensor nodes. A CH once selected cannot be selected again for 1/p rounds, where p is the CH selection probability. Simulation results demonstrate that, as compared to an eminent scheme, LCID has a higher Sybil attacks detection ratio, higher network lifetime, higher packet reception rate at the BS, lower energy consumption, and lower packet loss ratio.

Arifeen, Md Murshedul, Islam, Al Amin, Rahman, Md Mustafizur, Taher, Kazi Abu, Islam, Md.Maynul, Kaiser, M Shamim.  2019.  ANFIS based Trust Management Model to Enhance Location Privacy in Underwater Wireless Sensor Networks. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1–6.
Trust management is a promising alternative solution to different complex security algorithms for Underwater Wireless Sensor Networks (UWSN) applications due to its several resource constraint behaviour. In this work, we have proposed a trust management model to improve location privacy of the UWSN. Adaptive Neuro Fuzzy Inference System (ANFIS) has been exploited to evaluate trustworthiness of a sensor node. Also Markov Decision Process (MDP) has been considered. At each state of the MDP, a sensor node evaluates trust behaviour of forwarding node utilizing the FIS learning rules and selects a trusted node. Simulation has been conducted in MATLAB and simulation results show that the detection accuracy of trustworthiness is 91.2% which is greater than Knowledge Discovery and Data Mining (KDD) 99 intrusion detection based dataset. So, in our model 91.2% trustworthiness is necessary to be a trusted node otherwise it will be treated as a malicious or compromised node. Our proposed model can successfully eliminate the possibility of occurring any compromised or malicious node in the network.
Illi, Elmehdi, Bouanani, Faissal El, Ayoub, Fouad.  2019.  Physical Layer Security of an Amplify-and-Forward Energy Harvesting-Based Mixed RF/UOW System. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–8.
This paper investigates the secrecy outage performance of an energy harvesting-based dual-hop amplify-and-forward (AF) mixed radio-frequency/underwater optical wireless communication (RF/UOWC) system. A single-antenna source node (S) is considered, communicating with one legitimate destination node (D) with the aid of a multi-antenna AF relay (R) device. In this setup, the relay node receives the incoming signal from S via an RF link, which is subject to Nakagami-m fading, then performs maximal-ratio-combining (MRC) followed by a fixed-gain amplification, before transmitting it to the destination via a UOWC link, subject to mixture Exponential-Gamma fading. Assuming the presence of a malicious eavesdropper attempting to intercept the S- R hop, a tight approximate expression for the secrecy outage probability is retrieved. The derived results provide useful insights into the influence of key system parameters on the secrecy outage performance. Our analytical results are corroborated through computer simulations, which verifies their validity.
2020-02-26
Al-issa, Abdulaziz I., Al-Akhras, Mousa, ALsahli, Mohammed S., Alawairdhi, Mohammed.  2019.  Using Machine Learning to Detect DoS Attacks in Wireless Sensor Networks. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :107–112.

Widespread use of Wireless Sensor Networks (WSNs) introduced many security threats due to the nature of such networks, particularly limited hardware resources and infrastructure less nature. Denial of Service attack is one of the most common types of attacks that face such type of networks. Building an Intrusion Detection and Prevention System to mitigate the effect of Denial of Service attack is not an easy task. This paper proposes the use of two machine learning techniques, namely decision trees and Support Vector Machines, to detect attack signature on a specialized dataset. The used dataset contains regular profiles and several Denial of Service attack scenarios in WSNs. The experimental results show that decision trees technique achieved better (higher) true positive rate and better (lower) false positive rate than Support Vector Machines, 99.86% vs 99.62%, and 0.05% vs. 0.09%, respectively.

Thulasiraman, Preetha, Wang, Yizhong.  2019.  A Lightweight Trust-Based Security Architecture for RPL in Mobile IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.

Kumar, A. Ranjith, Sivagami, A..  2019.  Balanced Load Clustering with Trusted Multipath Relay Routing Protocol for Wireless Sensor Network. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1–6.

Clustering is one of an eminent mechanism which deals with large number of nodes and effective consumption of energy in wireless sensor networks (WSN). Balanced Load Clustering is used to balance the channel bandwidth by incorporating the concept of HMAC. Presently several research studies works to improve the quality of service and energy efficiency of WSN but the security issues are not taken care of. Relay based multipath trust is one of the methods to secure the network. To this end, a novel approach called Balanced Load Clustering with Trusted Multipath Relay Routing Protocol (BLC-TMR2) to improve the performance of the network. The proposed protocol consists of two algorithms. Initially in order to reduce the energy consumption of the network, balanced load clustering (BLC) concepts is introduced. Secondly to secure the network from the malicious activity trusted multipath relay routing protocol (TMR2) is used. Multipath routing is monitored by the relay node and it computed the trust values. Network simulation (NS2) software is used to obtain the results and the results prove that the proposed system performs better the earlier methods the in terms of efficiency, consumption, QoS and throughput.

Dhanya, K., Jeyalakshmi, C., Balakumar, A..  2019.  A Secure Autonomic Mobile Ad-Hoc Network Based Trusted Routing Proposal. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.

This research proposes an inspection on Trust Based Routing protocols to protect Internet of Things directing to authorize dependability and privacy amid to direction-finding procedure in inaccessible systems. There are number of Internet of Things (IOT) gadgets are interrelated all inclusive, the main issue is the means by which to protect the routing of information in the important systems from different types of stabbings. Clients won't feel secure on the off chance that they know their private evidence could without much of a stretch be gotten to and traded off by unapproved people or machines over the system. Trust is an imperative part of Internet of Things (IOT). It empowers elements to adapt to vulnerability and roughness caused by the through and through freedom of other devices. In Mobile Ad-hoc Network (MANET) host moves frequently in any bearing, so that the topology of the network also changes frequently. No specific algorithm is used for routing the packets. Packets/data must be routed by intermediate nodes. It is procumbent to different occurrences ease. There are various approaches to compute trust for a node such as fuzzy trust approach, trust administration approach, hybrid approach, etc. Adaptive Information Dissemination (AID) is a mechanism which ensures the packets in a specific transmission and it analysis of is there any attacks by hackers.It encompasses of ensuring the packet count and route detection between source and destination with trusted path.Trust estimation dependent on the specific condition or setting of a hub, by sharing the setting information onto alternate hubs in the framework would give a superior answer for this issue.Here we present a survey on various trust organization approaches in MANETs. We bring out instantaneous of these approaches for establishing trust of the partaking hubs in a dynamic and unverifiable MANET atmosphere.