Biblio
In the Internet of Things (IoT), it is feasible to interconnect networks of different devices and all these different devices, such as smartphones, sensor devices, and vehicles, are controlled according to a particular user. These different devices are delivered and accept the information on the network. This thing is to motivate us to do work on IoT and the devices used are sensor nodes. The validation of data delivery completely depends on the checks of count data forwarding in each node. In this research, we propose the Link Hop Value-based Intrusion Detection System (L-IDS) against the blackhole attack in the IoT with the assist of WSN. The sensor nodes are connected to other nodes through the wireless link and exchange data routing, as well as data packets. The LHV value is identified as the attacker's presence by integrating the data delivery in each hop. The LHV is always equivalent to the Actual Value (AV). The RPL routing protocol is used IPv6 to address the concept of routing. The Routing procedure is interrupted by an attacker by creating routing loops. The performance of the proposed L-IDS is compared to the RPL routing security scheme based on existing trust. The proposed L-IDS procedure is validating the presence of the attacker at every source to destination data delivery. and also disables the presence of the attacker in the network. Network performance provides better results in the existence of a security scheme and also fully represents the inoperative presence of black hole attackers in the network. Performance metrics show better results in the presence of expected IDS and improve network reliability.
The wireless communication has become very vast, important and easy to access nowadays because of less cost associated and easily available mobile devices. It creates a potential threat for the community while accessing some secure information like banking passwords on the unsecured network. This proposed research work expose such a potential threat such as Rogue Access Point (RAP) detection using soft computing prediction tool. Fuzzy logic is used to implement the proposed model to identify the presence of RAP existence in the network.
Wireless Sensor Network (WSN) is a heterogeneous type of network consisting of scattered sensor nodes and working together for data collection, processing, and transmission functions[1], [2]. Because WSN is widely used in vital matters, aspects of its security must also be considered. There are many types of attacks that might be carried out to disrupt WSN networks. The methods of attack that exist in WSN include jamming attack, tampering, Sybil attack, wormhole attack, hello flood attack, and, blackhole attack[3]. Blackhole attacks are one of the most dangerous attacks on WSN networks. Enhanced Check Agent method is designed to detect black hole attacks by sending a checking agent to record nodes that are considered black okay. The implementation will be tested right on a wireless sensor network using ZigBee technology. Network topology uses a mesh where each node can have more than one routing table[4]. The Enhanced Check Agent method can increase throughput to 100 percent.
This paper describes a realisation of a ResNet face recognition method through Zigbee-based wireless protocol. The system uses a CC2530 Zigbee-based radio frequency chip with connected VC0706 camera on it. The Arduino Nano had been used for organisation of data compression and effective division of Zigbee packets. The proposed solution also simplifies a data transmission within a strict bandwidth of Zigbee protocol and reliable packet forwarding in case of frequency distortion. The following investigation model uses Raspberry Pi 3 with connected Zigbee End Device (ZED) for successful receiving of important images and acceleration of deep learning interfaces. The model is integrated into a smart security system based on Zigbee modules, MySQL database, Android application and works in the background by using daemons procedures. To protect data, all wireless connections had been encrypted by the 128-bit Advanced Encryption Standard (AES-128) algorithm. Experimental results show a possibility to implement complex systems under restricted requirements of available transmission protocols.
It is necessary to improve the safety of the underwater acoustic sensor networks (UASNs) since it is mostly used in the military industry. Specific emitter identification is the process of identifying different transmitters based on the radio frequency fingerprint extracted from the received signal. The sonar transmitter is a typical low-frequency radiation source and is an important part of the UASNs. Class D power amplifier, a typical nonlinear amplifier, is usually used in sonar transmitters. The inherent nonlinearity of power amplifiers provides fingerprint features that can be distinguished without transmitters for specific emitter recognition. First, the nonlinearity of the sonar transmitter is studied in-depth, and the nonlinearity of the power amplifier is modeled and its nonlinearity characteristics are analyzed. After obtaining the nonlinear model of an amplifier, a similar amplifier in practical application is obtained by changing its model parameters as the research object. The output signals are collected by giving the same input of different models, and, then, the output signals are extracted and classified. In this paper, the memory polynomial model is used to model the amplifier. The power spectrum features of the output signals are extracted as fingerprint features. Then, the dimensionality of the high-dimensional features is reduced. Finally, the classifier is used to recognize the amplifier. The experimental results show that the individual sonar transmitter can be well identified by using the nonlinear characteristics of the signal. By this way, this method can enhance the communication safety of the UASNs.
Voice user interfaces can offer intuitive interaction with our devices, but the usability and audio quality could be further improved if multiple devices could collaborate to provide a distributed voice user interface. To ensure that users' voices are not shared with unauthorized devices, it is however necessary to design an access management system that adapts to the users' needs. Prior work has demonstrated that a combination of audio fingerprinting and fuzzy cryptography yields a robust pairing of devices without sharing the information that they record. However, the robustness of these systems is partially based on the extensive duration of the recordings that are required to obtain the fingerprint. This paper analyzes methods for robust generation of acoustic fingerprints in short periods of time to enable the responsive pairing of devices according to changes in the acoustic scenery and can be integrated into other typical speech processing tools.
Bluetooth Classic (BT) remains the de facto connectivity technology in car stereo systems, wireless headsets, laptops, and a plethora of wearables, especially for applications that require high data rates, such as audio streaming, voice calling, tethering, etc. Unlike in Bluetooth Low Energy (BLE), where address randomization is a feature available to manufactures, BT addresses are not randomized because they are largely believed to be immune to tracking attacks. We analyze the design of BT and devise a robust de-anonymization technique that hinges on the apparently benign information leaking from frame encoding, to infer a piconet's clock, hopping sequence, and ultimately the Upper Address Part (UAP) of the master device's physical address, which are never exchanged in clear. Used together with the Lower Address Part (LAP), which is present in all frames transmitted, this enables tracking of the piconet master, thereby debunking the privacy guarantees of BT. We validate this attack by developing the first Software-defined Radio (SDR) based sniffer that allows full BT spectrum analysis (79 MHz) and implements the proposed de-anonymization technique. We study the feasibility of privacy attacks with multiple testbeds, considering different numbers of devices, traffic regimes, and communication ranges. We demonstrate that it is possible to track BT devices up to 85 meters from the sniffer, and achieve more than 80% device identification accuracy within less than 1 second of sniffing and 100% detection within less than 4 seconds. Lastly, we study the identified privacy attack in the wild, capturing BT traffic at a road junction over 5 days, demonstrating that our system can re-identify hundreds of users and infer their commuting patterns.