Visible to the public Biblio

Found 441 results

Filters: Keyword is Wireless sensor networks  [Clear All Filters]
2020-12-21
Preda, M., Patriciu, V..  2020.  Simulating RPL Attacks in 6lowpan for Detection Purposes. 2020 13th International Conference on Communications (COMM). :239–245.
The Internet of Things (IoT) integrates the Internet and electronic devices belonging to different domains, such as smart home automation, industrial processes, military applications, health, and environmental monitoring. Usually, IoT devices have limited resources and Low Power and Lossy Networks (LLNs) are being used to interconnect such devices. Routing Protocol for Low-Power and Lossy Networks (RPL) is one of the preferred routing protocols for this type of network, since it was specially developed for LLNs, also known as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). In this paper the most well-known routing attacks against 6LoWPAN networks were studied and implemented through simulation, conducting a behavioral analysis of network components (resources, topology, and data traffic) under attack condition. In order to achieve a better understanding on how attacks in 6LoWPAN work, we first conducted a study on 6LoWPAN networks and RPL protocol functioning. Furthermore, we also studied a series of well-known routing attacks against this type of Wireless Sensor Networks and these attacks were then simulated using Cooja simulator provided by Contiki operating system. The results obtained after the simulations are discussed along with other previous researches. This analysis may be of real interest when it comes to identify indicators of compromise for each type of attack and appropriate countermeasures for prevention and detection of these attacks.
2020-12-14
Huang, Y., Wang, W., Wang, Y., Jiang, T., Zhang, Q..  2020.  Lightweight Sybil-Resilient Multi-Robot Networks by Multipath Manipulation. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2185–2193.

Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.

Wang, H., Ma, L., Bai, H..  2020.  A Three-tier Scheme for Sybil Attack Detection in Wireless Sensor Networks. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :752–756.
Wireless sensor network (WSN) is a wireless self-organizing multi-hop network that can sense and collect the information of the monitored environment through a certain number of sensor nodes which deployed in a certain area and transmit the collected information to the client. Due to the limited power and data capacity stored by the micro sensor, it is weak in communication with other nodes, data storage and calculation, and is very vulnerable to attack and harm to the entire network. The Sybil attack is a classic example. Sybil attack refers to the attack in which malicious nodes forge multiple node identities to participate in network operation. Malicious attackers can forge multiple node identities to participate in data forwarding. So that the data obtained by the end user without any use value. In this paper, we propose a three-tier detection scheme for the Sybil node in the severe environment. Every sensor node will determine whether they are Sybil nodes through the first-level and second-level high-energy node detection. Finally, the base station determines whether the Sybil node detected by the first two stages is true Sybil node. The simulation results show that our proposed scheme significantly improves network lifetime, and effectively improves the accuracy of Sybil node detection.
2020-12-07
Furtak, J., Zieliński, Z., Chudzikiewicz, J..  2019.  Security Domain for the Sensor Nodes with Strong Authentication. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1–6.
Nowadays interest in IoT solutions is growing. A significant barrier to the use of these solutions in military applications is to ensure the security of data transmission and authentication of data sources and recipients of the data. Developing an efficient solution to these problems requires finding a compromise between the facts that the sensors often are mobile, use wireless communication, usually have the small processing power and have little energy resources. The article presents the security domain designated for cooperating mobile sensor nodes. The domain has the following features: the strong authentication of each domain member, cryptographic protection of data exchange in the data link layer and protection of data stored in the sensor node resources. The domain is also prepared to perform diagnostic procedures and to exchange sensory data with other domains securely. At each node, the Trusted Platform Module (TPM) is used to support these procedures.
2020-12-02
Kaur, M., Malik, A..  2018.  An Efficient and Reliable Routing Protocol Using Bio-Inspired Techniques for Congestion Control in WSN. 2018 4th International Conference on Computing Sciences (ICCS). :15—22.

In wireless sensor networks (WSNs), congestion control is a very essential region of concern. When the packets that are coming get increased than the actual capacity of network or nodes results into congestion in the network. Congestion in network can cause reduction in throughput, increase in network delay, and increase in packet loss and sensor energy waste. For that reason, new complex methods are mandatory to tackle with congestion. So it is necessary to become aware of congestion and manage the congested resources in wireless sensor networks for enhancing the network performance. Diverse methodologies for congestion recognition and prevention have been presented in the previous couple of years. To handle some of the problems, this paper exhibits a new technique for controlling the congestion. An efficient and reliable routing protocol (ERRP) based on bio inspired algorithms is introduced in this paper for solving congestion problem. In the proposed work, a way is calculated to send the packets on the new pathway. The proposed work has used three approaches for finding the path which results into a congestion free path. Our analysis and simulation results shows that our approach provides better performance as compared to previous approaches in terms of throughput, packet loss, delay etc.

2020-11-23
Karavaev, I. S., Selivantsev, V. I., Shtern, Y. I., Shtern, M. Y..  2018.  The development of the data transfer protocol in the intelligent control systems of the energy carrier parameters. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1305–1308.
For the control of the parameters and for the accounting of the energy consumption in buildings and structures the intelligent control system has been developed that provides: the continuous monitoring of the thermodynamic parameters of the energy carriers measured by wireless smart sensors; the calculation and transmission of the measured parameters via the radio channel to the database for their accumulation and storage; control signals delivery for the control devices of the energy consumption and for the security devices; the maintaining of a database of the energy consumption accounting. For the interaction of the hardware and software in the control system, the SimpliciTI-based protocol and algorithms for the reliable data transmission over the radio channel in a dense urban environment have been developed.
2020-11-16
Januário, F., Cardoso, A., Gil, P..  2019.  A Multi-Agent Middleware for Resilience Enhancement in Heterogeneous Control Systems. 2019 IEEE International Conference on Industrial Technology (ICIT). :988–993.
Modern computing networks that enable distributed computing are comprised of a wide range of heterogeneous devices with different levels of resources, which are interconnected by different networking technologies and communication protocols. This integration, together with the state of the art technologies, has brought into play new uncertainties, associated with physical world and the cyber space. In heterogeneous networked control systems environments, awareness and resilience are two important properties that these systems should bear and comply with. In this work the problem of resilience enhancement in heterogeneous networked control systems is addressed based on a distributed middleware, which is propped up on a hierarchical multi-agent framework, where each of the constituent agents is devoted to a specific task. The proposed architecture takes into account physical and cyber vulnerabilities and ensures state and context awareness, and a minimum level of acceptable operational performance, in response to physical and cyber disturbances. Experiments on a IPv6-based test-bed proved the relevance and benefits offered by the proposed architecture.
Januário, F., Cardoso, A., Gil, P..  2018.  Multi-Agent Framework for Resilience Enhancement over a WSAN. 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :110–113.
Advances on the integration of wireless sensor and actuator networks, as a whole, have contribute to the greater reconfigurability of systems and lower installation costs with application to supervision of networked control systems. This integration, however, increases some vulnerabilities associated with the physical world and also with the cyber and security world. This trend makes the wireless nodes one of the most vulnerable component of these kind of systems, which can have a major impact on the overall performance of the networked control system. This paper presents an architecture relying on a hierarchical multi-agent system for resilience enhancement, with focus on wireless sensor and actuator networks. The proposed framework was evaluated on an IPv6 test-bed comprising several distributed devices, where performance and communication links health are analyzed. The relevance of the proposed approach is demonstrated by results collected from the test-bed.
2020-11-02
Anzer, Ayesha, Elhadef, Mourad.  2018.  A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :438—445.

Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.

Bloom, Gedare, Alsulami, Bassma, Nwafor, Ebelechukwu, Bertolotti, Ivan Cibrario.  2018.  Design patterns for the industrial Internet of Things. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1—10.
The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring.
2020-10-29
Sajyth, RB, Sujatha, G.  2018.  Design of Data Confidential and Reliable Bee Clustering Routing Protocol in MANET. 2018 International Conference on Computer Communication and Informatics (ICCCI). :1—7.
Mobile ad hoc network (MANET) requires extraneous energy effectualness and legion intelligence for which a best clustered based approach is pertained called the “Bee-Ad Hoc-C”. In MANET the mechanism of multi-hop routing is imperative but may leads to a challenging issue like lack of data privacy during communication. ECC (Elliptical Curve Cryptography) is integrated with the Bee clustering approach to provide an energy efficient and secure data delivery system. Even though it ensures data confidentiality, data reliability is still disputable such as data dropping attack, Black hole attack (Attacker router drops the data without forwarding to destination). In such cases the technique of overhearing is utilized by the neighbor routers and the packet forwarding statistics are measured based on the ratio between the received and forwarded packets. The presence of attack is detected if the packet forwarding ratio is poor in the network which paves a way to the alternate path identification for a reliable data transmission. The proposed work is an integration of SC-AODV along with ECC in Bee clustering approach with an extra added overhearing technique which n on the whole ensures data confidentiality, data reliability and energy efficiency.
Tomar, Ravi, Awasthi, Yogesh.  2019.  Prevention Techniques Employed in Wireless Ad-Hoc Networks. 2019 International Conference on Advanced Science and Engineering (ICOASE). :192—197.
The paper emphasizes the various aspects of ad-hoc networks. The different types of attacks that affect the system and are prevented by various algorithms mentioned in this paper. Since Ad-hoc wireless networks have no infrastructure and are always unreliable therefore they are subject to many attacks. The black hole attack is seen as one of the dangerous attacks of them. In this attack the malicious node usually absorbs each data packets that are similar to separate holes in everything. Likewise all packets in the network are dropped. For this reason various prevention measures should be employed in the form of routing finding first then the optimization followed by the classification.
2020-10-26
Mutalemwa, Lilian C., Seok, Junhee, Shin, Seokjoo.  2019.  Experimental Evaluation of Source Location Privacy Routing Schemes and Energy Consumption Performance. 2019 19th International Symposium on Communications and Information Technologies (ISCIT). :86–90.
Network lifetime and energy consumption of sensor nodes have an inversely proportional relationship. Thus, it is important to ensure source location privacy (SLP) routing schemes are energy-efficient. This work performs an experimental evaluation of some existing routing schemes and proposes a new angle-based routing algorithm to modify the schemes. The dynamic route creation process of the modified schemes is characterized by processes which include determination of route and banned regions and computation of control angle and lead factor parameters. Results of the analysis show that the modified schemes are effective at obfuscating the adversaries to provide strong SLP protection. Furthermore, the modified schemes consume relatively lower energy and guarantee longer network lifetime.
Zhou, Liming, Shan, Yingzi.  2019.  Multi-branch Source Location Privacy Protection Scheme Based on Random Walk in WSNs. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :543–547.
In many applications, source nodes send the sensing information of the monitored objects and the sinks receive the transmitted data. Considering the limited resources of sensor nodes, location privacy preservation becomes an important issue. Although many schemes are proposed to preserve source or sink location security, few schemes can preserve the location security of source nodes and sinks. In order to solve this problem, we propose a novel of multi-branch source location privacy protection method based on random walk. This method hides the location of real source nodes by setting multiple proxy sources. And multiple neighbors are randomly selected by the real source node as receivers until a proxy source receives the packet. In addition, the proxy source is chosen randomly, which can prevent the attacker from obtaining the location-related data of the real source node. At the same time, the scheme sets up a branch interference area around the base station to interfere with the adversary by increasing routing branches. Simulation results describe that our scheme can efficiently protect source and sink location privacy, reduce the communication overhead, and prolong the network lifetime.
Uyan, O. Gokhan, Gungor, V. Cagri.  2019.  Lifetime Analysis of Underwater Wireless Networks Concerning Privacy with Energy Harvesting and Compressive Sensing. 2019 27th Signal Processing and Communications Applications Conference (SIU). :1–4.
Underwater sensor networks (UWSN) are a division of classical wireless sensor networks (WSN), which are designed to accomplish both military and civil operations, such as invasion detection and underwater life monitoring. Underwater sensor nodes operate using the energy provided by integrated limited batteries, and it is a serious challenge to replace the battery under the water especially in harsh conditions with a high number of sensor nodes. Here, energy efficiency confronts as a very important issue. Besides energy efficiency, data privacy is another essential topic since UWSN typically generate delicate sensing data. UWSN can be vulnerable to silent positioning and listening, which is injecting similar adversary nodes into close locations to the network to sniff transmitted data. In this paper, we discuss the usage of compressive sensing (CS) and energy harvesting (EH) to improve the lifetime of the network whilst we suggest a novel encryption decision method to maintain privacy of UWSN. We also deploy a Mixed Integer Programming (MIP) model to optimize the encryption decision cases which leads to an improved network lifetime.
DaSilva, Gianni, Loud, Vincent, Salazar, Ana, Soto, Jeff, Elleithy, Abdelrahman.  2019.  Context-Oriented Privacy Protection in Wireless Sensor Networks. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–4.
As more devices become connected to the internet and new technologies emerge to connect them, security must keep up to protect data during transmission and at rest. Several instances of security breaches have forced many companies to investigate the effectiveness of their security measures. In this paper, we discuss different methodologies for protecting data as it relates to wireless sensor networks (WSNs). Data collected from these sensors range in type from location data of an individual to surveillance for military applications. We propose a solution that protects the location of the base station and the nodes while transmitting data.
Xu, Mengmeng, Zhu, Hai, Wang, Juanjuan, Xu, Hengzhou.  2019.  Dynamic and Disjoint Routing Mechanism for Protecting Source Location Privacy in WSNs. 2019 15th International Conference on Computational Intelligence and Security (CIS). :310–314.
In this paper, we investigate the protection mechanism of source location privacy, in which back-tracing attack is performed by an adversary. A dynamic and disjoint routing mechanism (DDRM) is proposed to achieve a strong protection for source location privacy in an energy-efficient manner. Specially, the selection of intermediate node renders the message transmission randomly and flexibly. By constructing k disjoint paths, an adversary could not receive sufficient messages to locate the source node. Simulation results illustrate the effectiveness of the proposed mechanism.
George, Chinnu Mary, Luke Babu, Sharon.  2019.  A Scalable Correlation Clustering strategy in Location Privacy for Wireless Sensor Networks against a Universal Adversary. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :1–3.
Wireless network sensors are outsized number of pocket sized sensors deployed in the area under surveillance. The sensor network is very sensitive to unattended and remote Environment with a wide variety of applications in the agriculture, health, industry there a lot of challenges being faced with respect to the energy, mobility, security. The paper presents with regard to the context based surrounding information which has location privacy to the source node against an adversary who sees the network at a whole so a correlation strategy is proposed for providing the privacy.
Mutalemwa, Lilian C., Shin, Seokjoo.  2019.  Investigating the Influence of Routing Scheme Algorithms on the Source Location Privacy Protection and Network Lifetime. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :1188–1191.
There exist numerous strategies for Source Location Privacy (SLP) routing schemes. In this study, an experimental analysis of a few routing schemes is done to investigate the influence of the routing scheme algorithms on the privacy protection level and the network lifetime performance. The analysis involved four categories of SLP routing schemes. Analysis results revealed that the algorithms used in the representative schemes for tree-based and angle-based routing schemes incur the highest influence. The tree-based algorithm stimulates the highest energy consumption with the lowest network lifetime while the angle-based algorithm does the opposite. Moreover, for the tree-based algorithm, the influence is highly dependent on the region of the network domain.
Almalkawi, Islam T., Raed, Jafar, Alghaeb, Nawaf, Zapata, Manel Guerrero.  2019.  An Efficient Location Privacy Scheme for Wireless Multimedia Sensor Networks. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1615–1618.
Most of the security algorithms proposed for the sensor networks such as secure routing, data encryption and authentication, and intrusion detection target protecting the content of the collected data from being exposed to different types of attacks. However, the context of the collected data, such as event occurrence, event time, and event location, is not addressed by these security mechanisms and can still be leaked to the adversaries. Therefore, we propose in this paper a novel and efficient unobservability scheme for source/sink location privacy for wireless multimedia sensor networks. The proposed privacy scheme is based on a cross-layer design between the application and routing layers in order to exploit the multimedia processing technique with multipath routing to hide the event occurrences and locations of important nodes without degrading the network performance. Simulation analysis shows that our proposed scheme satisfies the privacy requirements and has better performance compared to other existing techniques.
Tang, Di, Gu, Jian, Yu, You, Yang, Yuanyuan, Han, Weijia, Ma, Xiao.  2018.  Source-Location Privacy Based on Dynamic Mix-Ring in Wireless Sensor Networks. 2018 International Conference on Computing, Networking and Communications (ICNC). :327–331.
Wireless sensor networks (WSNs) have the potential to be widely used in many applications. Due to lack of a protected physical boundary, wireless communications are vulnerable to unauthorized interception and detection. While encryption can provide the integrality and confidentiality of the message, it is much more difficult to adequately address the source location privacy. For static deployed WSNs, adversary can easily perform trace-back attack to locate the source nodes by monitoring the traffic. The eavesdropped messages will leak the direction information of the source location by statistic analysis on traffic flow. In this paper, we propose a theoretical analysis measurement to address the quantitative amount of the information leakage from the eavesdropped message. Through this scheme, we analyze the conditions that satisfy the optimum protection for routing protocol design. Based on the proposed principle, we design a routing algorithm to minimize the information leakage by distributing the routing path uniformly in WSN. The theoretical analysis shows the proposed routing algorithm can provide approximate maximization of source location privacy. The simulation results show the proposed routing algorithm is very efficient and can be used for practical applications.
Bai, Leqiang, Li, Guoku.  2018.  Location Privacy Protection of WSN Based on Network Partition and Angle. 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1254–1260.
For the phantom routing algorithm, phantom source nodes are concentrated near the real source node, and for the angle based phantom routing algorithm, phantom source nodes focus on some areas, and the existing source location privacy protection algorithm has low security cycle, a source location privacy protection algorithm of wireless sensor networks based on angle and network partition is proposed. The algorithm selects the next hop node on forwarding path according to the angle relationship between neighbors, and ensures that phantom source nodes are far away from the real source node and have the diversity of geographic location through network partition. Simulation results show that, compared with the existing source location privacy protection algorithm, this algorithm can induce attackers to deviate from the real path, and increase security cycle.
Zhang, Kewang, Zahng, Qiong.  2018.  Preserve Location Privacy for Cyber-Physical Systems with Addresses Hashing at Data Link Layer. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1028–1032.
Due to their low complexity and robustness in nature, wireless sensor networks are a key component in cyber-physical system. The integration of wireless sensor network in cyber-physical system provides immense benefits in distributed controlled environment. However, the open nature of the wireless medium makes resource-constrained WSN vulnerable to unauthorized interception and detection. Privacy is becoming one of the major issues that jeopardize the successful deployment of WSN. In this paper, we propose a scheme named HASHA to provide location privacy. Different from previous approaches, HASHA protect nodes' location privacy at data link layer. It is well known that payload at data link layer frame is well protected through cryptosystem, but addresses at data link layer leaves unprotected. The adversaries can identify nodes in the network easily by capturing frames and check the source and destination addresses. If both addresses are well protected and unknown to the adversaries, they cannot identify nodes of the targeted networks, rendering it very difficult to launch traffic analysis and locate subjects. Simulation and analytical results demonstrate that our scheme provides stronger privacy protection and requires much less energy.
Rimjhim, Roy, Pradeep Kumar, Prakash Singh, Jyoti.  2018.  Encircling the Base Station for Source Location Privacy in Wireless Sensor Networks. 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS). :307–312.
Location Privacy breach in Wireless Sensor Networks (WSNs) cannot be controlled by encryption techniques as all the communications are signal based. Signal strength can be analyzed to reveal many routing information. Adversary takes advantage of this and tracks the incoming packet to know the direction of the packet. With the information of location of origin of packets, the Source is also exposed which is generating packets on sensing any object. Thus, the location of subject is exposed. For protecting such privacy breaches, routing schemes are used which create anonymization or diverts the adversary. In this paper, we are using `Dummy' packets that will be inserted into real traffic to confuse the adversary. The dummy packets are such inserted that they encircle the Sink or Base Station. These Dummy packets are send with a value of TTL (Time To Live) field such that they travel only a few hops. Since adversary starts backtracking from the Sink, it will be trapped in the dummy traffic. In our protocol, we are confusing adversary without introducing any delay in packet delivery. Adversary uses two common methods for knowing the source i.e. Traffic Analysis and Back-tracing. Mathematically and experimentally, our proposal is sound for both type of methods. Overhead is also balanced as packets will not live long.
Miao, Xu, Han, Guangjie, He, Yu, Wang, Hao, Jiang, Jinfang.  2018.  A Protecting Source-Location Privacy Scheme for Wireless Sensor Networks. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–5.
An exciting network called smart IoT has great potential to improve the level of our daily activities and the communication. Source location privacy is one of the critical problems in the wireless sensor network (WSN). Privacy protections, especially source location protection, prevent sensor nodes from revealing valuable information about targets. In this paper, we first discuss about the current security architecture and attack modes. Then we propose a scheme based on cloud for protecting source location, which is named CPSLP. This proposed CPSLP scheme transforms the location of the hotspot to cause an obvious traffic inconsistency. We adopt multiple sinks to change the destination of packet randomly in each transmission. The intermediate node makes routing path more varied. The simulation results demonstrate that our scheme can confuse the detection of adversary and reduce the capture probability.