Biblio
Software-defined wireless sensor cognitive radio network is one of the emerging technologies which is simple, agile, and flexible. The sensor network comprises of a sink node with high processing power. The sensed data is transferred to the sink node in a hop-by-hop basis by sensor nodes. The network is programmable, automated, agile, and flexible. The sensor nodes are equipped with cognitive radios, which sense available spectrum bands and transmit sensed data on available bands, which improves spectrum utilization. Unfortunately, the Software-defined wireless sensor cognitive radio network is prone to security issues. The sinkhole attack is the most common attack which can also be used to launch other attacks. We propose and evaluate the performance of Hop Count-Based Sinkhole Attack detection Algorithm (HCOBASAA) using probability of detection, probability of false negative, and probability of false positive as the performance metrics. On average HCOBASAA managed to yield 100%, 75%, and 70% probability of detection.
Utilization of Wireless sensor network is growing with the development in modern technologies. On other side electromagnetic spectrum is limited resources. Application of wireless communication is expanding day by day which directly threaten electromagnetic spectrum band to become congested. Cognitive Radio solves this issue by implementation of unused frequency bands as "White Space". There is another important factor that gets attention in cognitive model i.e: Wireless Security. One of the famous causes of security threat is malicious node in cognitive radio wireless sensor networks (CRWSN). The goal of this paper is to focus on security issues which are related to CRWSN as Fusion techniques, Co-operative Spectrum sensing along with two dangerous attacks in CR: Primary User Emulation (PUE) and Spectrum Sensing Data Falsification (SSDF).
Mobile military networks are uniquely challenging to build and maintain, because of their wireless nature and the unfriendliness of the environment, resulting in unreliable and capacity limited performance. Currently, most tactical networks implement TCP/IP, which was designed for fairly stable, infrastructure-based environments, and requires sophisticated and often application-specific extensions to address the challenges of the communication scenario. Information Centric Networking (ICN) is a clean slate networking approach that does not depend on stable connections to retrieve information and naturally provides support for node mobility and delay/disruption tolerant communications - as a result it is particularly interesting for tactical applications. However, despite ICN seems to offer some structural benefits for tactical environments over TCP/IP, a number of challenges including naming, security, performance tuning, etc., still need to be addressed for practical adoption. This document, prepared within NATO IST-161 RTG, evaluates the effectiveness of Named Data Networking (NDN), the de facto standard implementation of ICN, in the context of tactical edge networks and its potential for adoption.
This paper studies the physical layer security performance of a Simultaneous Wireless Information and Power Transfer (SWIPT) millimeter wave (mmWave) ultra-dense network under a stochastic geometry framework. Specifically, we first derive the energy-information coverage probability and secrecy probability in the considered system under time switching policies. Then the effective secrecy throughput (EST) which can characterize the trade-off between the energy coverage, secure and reliable transmission performance is derived. Theoretical analyses and simulation results reveal the design insights into the effects of various network parameters like, transmit power, time switching factor, transmission rate, confidential information rate, etc, on the secrecy performance. Specifically, it is impossible to realize the effective secrecy throughput improvement just by increasing the transmit power.
Recent advances in Cross-Technology Communication (CTC) enable the coexistence and collaboration among heterogeneous wireless devices operating in the same ISM band (e.g., Wi-Fi, ZigBee, and Bluetooth in 2.4 GHz). However, state-of-the-art CTC schemes are vulnerable to spoofing attacks since there is no practice authentication mechanism yet. This paper proposes a scheme to enable the spoofing attack detection for CTC in heterogeneous wireless networks by using physical layer information. First, we propose a model to detect ZigBee packets and measure the corresponding Received Signal Strength (RSS) on Wi-Fi devices. Then, we design a collaborative mechanism between Wi-Fi and ZigBee devices to detect the spoofing attack. Finally, we implement and evaluate our methods through experiments on commercial off-the- shelf (COTS) Wi-Fi and ZigBee devices. Our results show that it is possible to measure the RSS of ZigBee packets on Wi-Fi device and detect spoofing attack with both a high detection rate and a low false positive rate in heterogeneous wireless networks.
Internet of Things (IoT) is a contemporary concept for connecting the existing things in our environment with the Internet for a sake of making the objects information are accessible from anywhere and anytime to support a modern life style based on the Internet. With the rapid development of the IoT technologies and widely spreading in most of the fields such as buildings, health, education, transportation and agriculture. Thus, the IoT applications require increasing data collection from the IoT devices to send these data to the applications or servers which collect or analyze the data, so it is a very important to secure the data and ensure that do not reach a malicious adversary. This paper reviews some attacks in the IoT applications and the security weaknesses in the IoT environment. In addition, this study presents the challenges of IoT in terms of hardware, network and software. Moreover, this paper summarizes and points to some attacks on the smart car, smart home, smart campus, smart farm and healthcare.
Networked control systems improve the efficiency of cyber-physical plants both functionally, by the availability of data generated even in far-flung locations, and operationally, by the adoption of standard protocols. A side-effect, however, is that now the safety and stability of a local process and, in turn, of the entire plant are more vulnerable to malicious agents. Leveraging the communication infrastructure, the authors here present the design of networked control systems with built-in resilience. Specifically, the paper addresses attacks known as false data injections that originate within compromised sensors. In the proposed framework for closed-loop control, the feedback signal is constructed by weighted consensus of estimates of the process state gathered from other interconnected processes. Observers are introduced to generate the state estimates from the local data. Side-channel monitors are attached to each primary sensor in order to assess proper code execution. These monitors provide estimates of the trust assigned to each observer output and, more importantly, independent of it; these estimates serve as weights in the consensus algorithm. The authors tested the concept on a multi-sensor networked physical experiment with six primary sensors. The weighted consensus was demonstrated to yield a feedback signal within specified accuracy even if four of the six primary sensors were injecting false data.
From the last few years, security in wireless sensor network (WSN) is essential because WSN application uses important information sharing between the nodes. There are large number of issues raised related to security due to open deployment of network. The attackers disturb the security system by attacking the different protocol layers in WSN. The standard AODV routing protocol faces security issues when the route discovery process takes place. The data should be transmitted in a secure path to the destination. Therefore, to support the process we have proposed a trust based intrusion detection system (NL-IDS) for network layer in WSN to detect the Black hole attackers in the network. The sensor node trust is calculated as per the deviation of key factor at the network layer based on the Black hole attack. We use the watchdog technique where a sensor node continuously monitors the neighbor node by calculating a periodic trust value. Finally, the overall trust value of the sensor node is evaluated by the gathered values of trust metrics of the network layer (past and previous trust values). This NL-IDS scheme is efficient to identify the malicious node with respect to Black hole attack at the network layer. To analyze the performance of NL-IDS, we have simulated the model in MATLAB R2015a, and the result shows that NL-IDS is better than Wang et al. [11] as compare of detection accuracy and false alarm rate.
Ever-driven by technological innovation, the Internet of Things (IoT) is continuing its exceptional evolution and growth into the common consumer space. In the wake of these developments, this paper proposes a framework for an IoT home security system that is secure, expandable, and accessible. Congruent with the ideals of the IoT, we are proposing a system utilizing an ultra-low-power wireless sensor network which would interface with a central hub via Bluetooth 4, commonly referred to as Bluetooth Low Energy (BLE), to monitor the home. Additionally, the system would interface with an Amazon Echo to accept user voice commands. The aforementioned central hub would also act as a web server and host an internet accessible configuration page from which users could monitor and customize their system. An internet-connected system would carry the capability to notify the users of system alarms via SMS or email. Finally, this proof of concept is intended to demonstrate expandability into other areas of home automation or building monitoring functions in general.
With the growth of smartphone sales and app usage, fingerprinting and identification of smartphone apps have become a considerable threat to user security and privacy. Traffic analysis is one of the most common methods for identifying apps. Traditional countermeasures towards traffic analysis includes traffic morphing and multipath routing. The basic idea of multipath routing is to increase the difficulty for adversary to eavesdrop all traffic by splitting traffic into several subflows and transmitting them through different routes. Previous works in multipath routing mainly focus on Wireless Sensor Networks (WSNs) or Mobile Ad Hoc Networks (MANETs). In this paper, we propose a multipath routing scheme for smartphones with edge network assistance to mitigate traffic analysis attack. We consider an adversary with limited capability, that is, he can only intercept the traffic of one node following certain attack probability, and try to minimize the traffic an adversary can intercept. We formulate our design as a flow routing optimization problem. Then a heuristic algorithm is proposed to solve the problem. Finally, we present the simulation results for our scheme and justify that our scheme can effectively protect smartphones from traffic analysis attack.
Mobile ad hoc networks (MANETs) are a set of mobile wireless nodes that can communicate without the need for an infrastructure. Features of MANETs have made them vulnerable to many security attacks including wormhole attack. In the past few years, different methods have been introduced for detecting, mitigating, and preventing wormhole attacks in MANETs. In this paper, we introduce a new decentralized scheme based on statistical metrics for detecting wormholes that employs “number of new neighbors” along with “number of neighbors” for each node as its parameters. The proposed scheme has considerably low detection delay and does not create any traffic overhead for routing protocols which include neighbor discovery mechanism. Also, it possesses reasonable processing power and memory usage. Our simulation results using NS3 simulator show that the proposed scheme performs well in terms of detection accuracy, false positive rate and mean detection delay.
The Internet of things (IoT) is a distributed, networked system composed of many embedded sensor devices. Unfortunately, these devices are resource constrained and susceptible to malicious data-integrity attacks and failures, leading to unreliability and sometimes to major failure of parts of the entire system. Intrusion detection and failure handling are essential requirements for IoT security. Nevertheless, as far as we know, the area of data-integrity detection for IoT has yet to receive much attention. Most previous intrusion-detection methods proposed for IoT, particularly for wireless sensor networks (WSNs), focus only on specific types of network attacks. Moreover, these approaches usually rely on using precise values to specify abnormality thresholds. However, sensor readings are often imprecise and crisp threshold values are inappropriate. To guarantee a lightweight, dependable monitoring system, we propose a novel hierarchical framework for detecting abnormal nodes in WSNs. The proposed approach uses fuzzy logic in event-condition-action (ECA) rule-based WSNs to detect malicious nodes, while also considering failed nodes. The spatiotemporal semantics of heterogeneous sensor readings are considered in the decision process to distinguish malicious data from other anomalies. Following our experiments with the proposed framework, we stress the significance of considering the sensor correlations to achieve detection accuracy, which has been neglected in previous studies. Our experiments using real-world sensor data demonstrate that our approach can provide high detection accuracy with low false-alarm rates. We also show that our approach performs well when compared to two well-known classification algorithms.
Recently, as the age of the Internet of Things is approaching, there are more and more devices that communicate data with each other by incorporating sensors and communication functions in various objects. If the IoT is miniaturized, it can be regarded as a sensor having only the sensing ability and the low performance communication ability. Low-performance sensors are difficult to use high-quality communication, and wireless security used in expensive wireless communication devices cannot be applied. Therefore, this paper proposes authentication and key Agreement that can be applied in sensor networks using communication with speed less than 1 Kbps and has limited performances.
The Internet of Things (IoT) is the network where physical devices, sensors, appliances and other different objects can communicate with each other without the need for human intervention. Wireless Sensor Networks (WSNs) are main building blocks of the IoT. Both the IoT and WSNs have many critical and non-critical applications that touch almost every aspect of our modern life. Unfortunately, these networks are prone to various types of security threats. Therefore, the security of IoT and WSNs became crucial. Furthermore, the resource limitations of the devices used in these networks complicate the problem. One of the most recent and effective approaches to address such challenges is machine learning. Machine learning inspires many solutions to secure the IoT and WSNs. In this paper, we survey the different threats that can attack both IoT and WSNs and the machine learning techniques developed to counter them.
The existing radial topology makes the power system less reliable since any part in the system failure will disrupt electrical power delivery in the network. The increasing security concerns, electrical energy theft, and present advancement in Information and Communication Technologies are some factors that led to modernization of power system. In a smart grid, a network of smart sensors offers numerous opportunities that may include monitoring of power, consumer-side energy management, synchronization of dispersed power storage, and integrating sources of renewable energy. Smart sensor networks are low cost and are ease to deploy hence they are favorable contestants for deployment smart power grids at a larger scale. These networks will result in a colossal volume of dissimilar range of data that require an efficient processing and analyzing process in order to realize an efficient smart grid. The existing technology can be used to collect data but dealing with the collected information proficiently as well as mining valuable material out of it remains challenging. The paper investigates communication technologies that maybe deployed in a smart grid. In this paper simulations results for the Additive White Gaussian Noise (AWGN) channel are illustrated. We propose a model and a communication network domain riding on the power system domain. The model was interrogated by simulation in MATLAB.
In the distributed Internet of Things (IoT) architecture, sensors collect data from vehicles, home appliances and office equipment and other environments. Various objects contain the sensor which process data, cooperate and exchange information with other embedded devices and end users in a distributed network. It is important to provide end-to-end communication security and an authentication system to guarantee the security and reliability of the data in such a distributed system. Two-factor authentication is a solution to improve the security level of password-based authentication processes and immunized the system against many attacks. At the same time, the computational and storage overhead of an authentication method also needs to be considered in IoT scenarios. For this reason, many cryptographic schemes are designed especially for the IoT; however, we observe a lack of laboratory hardware test beds and modules, and universal authentication hardware modules. This paper proposes a design and analysis for a hardware module in the IoT which allows the use of two-factor authentication based on smart cards, while taking into consideration the limited processing power and energy reserves of nodes, as well as designing the system with scalability in mind.
Ubiquitous Healthcare System (U-Healthcare) is a well-known application of wireless sensor networking (WSN). In this system, the sensors take less power for operating the function. As the data transfers between sensor and other stations is sensitive so there needs to provide a security scheme. Due to the low life of sensor nodes in Wireless Sensor Networks (WSN), asymmetric key based security (AKS) architecture is always considered as unsuitable for these types of networks. Several papers have been published in recent past years regarding how to incorporate AKS in WSN, Haque et al's Asymmetric key based Architecture (AKA) is one of them. But later it is found that this system has authentication problem and therefore prone to man-in-the-middle (MITM) attack, furthermore it is not a truly asymmetric based scheme. We address these issues in this paper and proposed a complete asymmetric approach using PEKS-PM (proposed by Pham in [8]) to remove impersonation attack. We also found some other vulnerabilities in the original AKA system and proposed solutions, therefore making it a better and enhanced asymmetric key based architecture.
Indoor localization of unknown acoustic events with MEMS microphone arrays have a huge potential in applications like home assisted living and surveillance. This article presents an Angle of Arrival (AoA) fingerprinting method for use in Wireless Acoustic Sensor Networks (WASNs) with low-profile microphone arrays. In a first research phase, acoustic measurements are performed in an anechoic room to evaluate two computationally efficient time domain delay-based AoA algorithms: one based on dot product calculations and another based on dot products with a PHAse Transform (PHAT). The evaluation of the algorithms is conducted with two sound events: white noise and a female voice. The algorithms are able to calculate the AoA with Root Mean Square Errors (RMSEs) of 3.5° for white noise and 9.8° to 16° for female vocal sounds. In the second research phase, an AoA fingerprinting algorithm is developed for acoustic event localization. The proposed solution is experimentally verified in a room of 4.25 m by 9.20 m with 4 acoustic sensor nodes. Acoustic fingerprints of white noise, recorded along a predefined grid in the room, are used to localize white noise and vocal sounds. The localization errors are evaluated using one node at a time, resulting in mean localization errors between 0.65 m and 0.98 m for white noise and between 1.18 m and 1.52 m for vocal sounds.