Biblio
In this paper, we present results from a human-subject study designed to explore two facets of human mental models of robots - inferred capability and intention - and their relationship to overall trust and eventual decisions. In particular, we examine delegation situations characterized by uncertainty, and explore how inferred capability and intention are applied across different tasks. We develop an online survey where human participants decide whether to delegate control to a simulated UAV agent. Our study shows that human estimations of robot capability and intent correlate strongly with overall self-reported trust. However, overall trust is not independently sufficient to determine whether a human will decide to trust (delegate) a given task to a robot. Instead, our study reveals that estimations of robot intention, capability, and overall trust are integrated when deciding to delegate. From a broader perspective, these results suggest that calibrating overall trust alone is insufficient; to make correct decisions, humans need (and use) multi-faceted mental models when collaborating with robots across multiple contexts.
This paper sheds light on the collaborative efforts in restoring cyber and physical subsystems of a modern power distribution system after the occurrence of an extreme weather event. The extensive cyber-physical interdependencies in the operation of power distribution systems are first introduced for investigating the functionality loss of each subsystem when the dependent subsystem suffers disruptions. A resilience index is then proposed for measuring the effectiveness of restoration activities in terms of restoration rapidity. After modeling operators' decision making for economic dispatch as a second-order cone programming problem, this paper proposes a heuristic approach for prioritizing the activities for restoring both cyber and physical subsystems. In particular, the proposed heuristic approach takes into consideration of cyber-physical interdependencies for improving the operation performance. Case studies are also conducted to validate the collaborative restoration model in the 33-bus power distribution system.
Mutriku wave farm is the first commercial plant all around the world. Since July 2011 it has been continuously selling electricity to the grid. It operates with the OWC technology and has 14 operating Wells-type turbines. In the plant there is a SCADA data recording system that collects the most important parameters of the turbines; among them, the pressure in the inlet chamber, the position of the security valve (from fully open to fully closed) and the generated power in the last 5 minutes. There is also an electricity meter which provides information about the amount of electric energy sold to the grid. The 2014 winter (January, February and March), and especially the first fortnight of February, was a stormy winter with rough sea state conditions. This was reflected both in the performance of the turbines (high pressure values, up to 9234.2 Pa; low opening degrees of the security valve, down to 49.4°; and high power generation of about 7681.6 W, all these data being average values) and in the calculated capacity factor (CF = 0.265 in winter and CF = 0.294 in February 2014). This capacity factor is a good tool for the comparison of different WEC technologies or different locations and shows an important seasonal behavior.
The method of choice the control parameters of a complex system based on estimates of the risks is proposed. The procedure of calculating the estimates of risks intended for a choice of rational managing directors of influences by an allocation of the group of the operating factors for the set criteria factor is considered. The purpose of choice of control parameters of the complex system is the minimization of an estimate of the risk of the functioning of the system by mean of a solution of a problem of search of an extremum of the function of many variables. The example of a choice of the operating factors in the sphere of intangible assets is given.
Named Data Networking (NDN) is one of the future internet architectures, which is a clean-slate approach. NDN provides intelligent data retrieval using the principles of name-based symmetrical forwarding of Interest/Data packets and innetwork caching. The continually increasing demand for rapid dissemination of large-scale scientific data is driving the use of NDN in data-intensive science experiments. In this paper, we establish an intercontinental NDN testbed. In the testbed, an NDN-based application that targets climate science as an example data intensive science application is designed and implemented, which has differentiated features compared to those of previous studies. We verify experimental justification of using NDN for climate science in the intercontinental network, through performance comparisons between classical delivery techniques and NDN-based climate data delivery.
Climate change has affected the cultivation in all countries with extreme drought, flooding, higher temperature, and changes in the season thus leaving behind the uncontrolled production. Consequently, the smart farm has become part of the crucial trend that is needed for application in certain farm areas. The aims of smart farm are to control and to enhance food production and productivity, and to increase farmers' profits. The advantages in applying smart farm will improve the quality of production, supporting the farm workers, and better utilization of resources. This study aims to explore the research trends and identify research clusters on smart farm using bibliometric analysis that has supported farming to improve the quality of farm production. The bibliometric analysis is the method to explore the relationship of the articles from a co-citation network of the articles and then science mapping is used to identify clusters in the relationship. This study examines the selected research articles in the smart farm field. The area of research in smart farm is categorized into two clusters that are soil carbon emission from farming activity, food security and farm management by using a VOSviewer tool with keywords related to research articles on smart farm, agriculture, supply chain, knowledge management, traceability, and product lifecycle management from Web of Science (WOS) and Scopus online database. The major cluster of smart farm research is the soil carbon emission from farming activity which impacts on climate change that affects food production and productivity. The contribution is to identify the trends on smart farm to develop research in the future by means of bibliometric analysis.
A novel approach is developed for analyzing power system vulnerability related to extraordinary events. Vulnerability analyses are necessary for identification of barriers to prevent such events and as a basis for the emergency preparedness. Identification of cause and effect relationships to reveal vulnerabilities related to extraordinary events is a complex and difficult task. In the proposed approach, the analysis starts by identifying the critical consequences. Then the critical contingencies and operating states, and which external threats and causes that may result in such severe consequences, are identified. This is opposed to the traditional risk and vulnerability analysis which starts by analyzing threats and what can happen as a chain of events. The vulnerability analysis methodology is tested and demonstrated on real systems.