Visible to the public Biblio

Found 227 results

Filters: Keyword is power engineering computing  [Clear All Filters]
2020-08-28
Gayathri, Bhimavarapu, Yammani, Chandrasekhar.  2019.  Multi-Attacking Strategy on Smart Grid with Incomplete Network Information. 2019 8th International Conference on Power Systems (ICPS). :1—5.

The chances of cyber-attacks have been increased because of incorporation of communication networks and information technology in power system. Main objective of the paper is to prove that attacker can launch the attack vector without the knowledge of complete network information and the injected false data can't be detected by power system operator. This paper also deals with analyzing the impact of multi-attacking strategy on the power system. This false data attacks incurs lot of damage to power system, as it misguides the power system operator. Here, we demonstrate the construction of attack vector and later we have demonstrated multiple attacking regions in IEEE 14 bus system. Impact of attack vector on the power system can be observed and it is proved that the attack cannot be detected by power system operator with the help of residue check method.

2020-08-24
Yeboah-Ofori, Abel, Islam, Shareeful, Brimicombe, Allan.  2019.  Detecting Cyber Supply Chain Attacks on Cyber Physical Systems Using Bayesian Belief Network. 2019 International Conference on Cyber Security and Internet of Things (ICSIoT). :37–42.

Identifying cyberattack vectors on cyber supply chains (CSC) in the event of cyberattacks are very important in mitigating cybercrimes effectively on Cyber Physical Systems CPS. However, in the cyber security domain, the invincibility nature of cybercrimes makes it difficult and challenging to predict the threat probability and impact of cyber attacks. Although cybercrime phenomenon, risks, and treats contain a lot of unpredictability's, uncertainties and fuzziness, cyberattack detection should be practical, methodical and reasonable to be implemented. We explore Bayesian Belief Networks (BBN) as knowledge representation in artificial intelligence to be able to be formally applied probabilistic inference in the cyber security domain. The aim of this paper is to use Bayesian Belief Networks to detect cyberattacks on CSC in the CPS domain. We model cyberattacks using DAG method to determine the attack propagation. Further, we use a smart grid case study to demonstrate the applicability of attack and the cascading effects. The results show that BBN could be adapted to determine uncertainties in the event of cyberattacks in the CSC domain.

Huang, Hao, Kazerooni, Maryam, Hossain-McKenzie, Shamina, Etigowni, Sriharsha, Zonouz, Saman, Davis, Katherine.  2019.  Fast Generation Redispatch Techniques for Automated Remedial Action Schemes. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1–8.
To ensure power system operational security, it not only requires security incident detection, but also automated intrusion response and recovery mechanisms to tolerate failures and maintain the system's functionalities. In this paper, we present a design procedure for remedial action schemes (RAS) that improves the power systems resiliency against accidental failures or malicious endeavors such as cyber attacks. A resilience-oriented optimal power flow is proposed, which optimizes the system security instead of the generation cost. To improve its speed for online application, a fast greedy algorithm is presented to narrow the search space. The proposed techniques are computationally efficient and are suitable for online RAS applications in large-scale power systems. To demonstrate the effectiveness of the proposed methods, there are two case studies with IEEE 24-bus and IEEE 118-bus systems.
Ulrich, Jacob J., Vaagensmith, Bjorn C., Rieger, Craig G., Welch, Justin J..  2019.  Software Defined Cyber-Physical Testbed for Analysis of Automated Cyber Responses for Power System Security. 2019 Resilience Week (RWS). 1:47–54.

As the power grid becomes more interconnected the attack surface increases and determining the causes of anomalies becomes more complex. Automated responses are a mechanism which can provide resilience in a power system by responding to anomalies. An automated response system can make intelligent decisions when paired with an automated health assessment system which includes a human in the loop for making critical decisions. Effective responses can be determined by developing a matrix which considers the likely impacts on resilience if a response is taken. A testbed assists to analyze these responses and determine their effects on system resilience.

2020-08-13
Yang, Huiting, Bai, Yunxiao, Zou, Zhenwan, Shi, Yuanyuan, Chen, Shuting, Ni, Chenxi.  2019.  Research on Security Self-defense of Power Information Network Based on Artificial Intelligence. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1248—1251.
By studying the problems of network information security in power system, this paper proposes a self-defense research and solution for power information network based on artificial intelligence. At the same time, it proposes active defense new technologies such as vulnerability scanning, baseline scanning, network security attack and defense drills in power information network security, aiming at improving the security level of network information and ensuring the security of the information network in the power system.
2020-08-10
Onaolapo, A.K., Akindeji, K.T..  2019.  Application of Artificial Neural Network for Fault Recognition and Classification in Distribution Network. 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :299–304.
Occurrence of faults in power systems is unavoidable but their timely recognition and location enhances the reliability and security of supply; thereby resulting in economic gain to consumers and power utility alike. Distribution Network (DN) is made smarter by the introduction of sensors and computers into the system. In this paper, detection and classification of faults in DN using Artificial Neural Network (ANN) is emphasized. This is achieved through the employment of Back Propagation Algorithm (BPA) of the Feed Forward Neural Network (FFNN) using three phase voltages and currents as inputs. The simulations were carried out using the MATLAB® 2017a. ANN with various hidden layers were analyzed and the results authenticate the effectiveness of the method.
2020-08-07
Hasan, Kamrul, Shetty, Sachin, Ullah, Sharif.  2019.  Artificial Intelligence Empowered Cyber Threat Detection and Protection for Power Utilities. 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC). :354—359.
Cyber threats have increased extensively during the last decade, especially in smart grids. Cybercriminals have become more sophisticated. Current security controls are not enough to defend networks from the number of highly skilled cybercriminals. Cybercriminals have learned how to evade the most sophisticated tools, such as Intrusion Detection and Prevention Systems (IDPS), and Advanced Persistent Threat (APT) is almost invisible to current tools. Fortunately, the application of Artificial Intelligence (AI) may increase the detection rate of IDPS systems, and Machine Learning (ML) techniques can mine data to detect different attack stages of APT. However, the implementation of AI may bring other risks, and cybersecurity experts need to find a balance between risk and benefits.
Liu, Donglan, Zhang, Hao, Yu, Hao, Liu, Xin, Zhao, Yong, Lv, Guodong.  2019.  Research and Application of APT Attack Defense and Detection Technology Based on Big Data Technology. 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC). :1—4.
In order to excavate security threats in power grid by making full use of heterogeneous data sources in power information system, this paper proposes APT (Advanced Persistent Threat) attack detection sandbox technology and active defense system based on big data analysis technology. First, the file is restored from the mirror traffic and executed statically. Then, sandbox execution was carried out to introduce analysis samples into controllable virtual environment, and dynamic analysis and operation samples were conducted. Through analyzing the dynamic processing process of samples, various known and unknown malicious code, APT attacks, high-risk Trojan horses and other network security risks were comprehensively detected. Finally, the threat assessment of malicious samples is carried out and visualized through the big data platform. The results show that the method proposed in this paper can effectively warn of unknown threats, improve the security level of system data, have a certain active defense ability. And it can effectively improve the speed and accuracy of power information system security situation prediction.
Lou, Xin, Tran, Cuong, Yau, David K.Y., Tan, Rui, Ng, Hongwei, Fu, Tom Zhengjia, Winslett, Marianne.  2019.  Learning-Based Time Delay Attack Characterization for Cyber-Physical Systems. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
The cyber-physical systems (CPSes) rely on computing and control techniques to achieve system safety and reliability. However, recent attacks show that these techniques are vulnerable once the cyber-attackers have bypassed air gaps. The attacks may cause service disruptions or even physical damages. This paper designs the built-in attack characterization scheme for one general type of cyber-attacks in CPS, which we call time delay attack, that delays the transmission of the system control commands. We use the recurrent neural networks in deep learning to estimate the delay values from the input trace. Specifically, to deal with the long time-sequence data, we design the deep learning model using stacked bidirectional long short-term memory (LSTM) units. The proposed approach is tested by using the data generated from a power plant control system. The results show that the LSTM-based deep learning approach can work well based on data traces from three sensor measurements, i.e., temperature, pressure, and power generation, in the power plant control system. Moreover, we show that the proposed approach outperforms the base approach based on k-nearest neighbors.
2020-08-03
Nakayama, Kiyoshi, Muralidhar, Nikhil, Jin, Chenrui, Sharma, Ratnesh.  2019.  Detection of False Data Injection Attacks in Cyber-Physical Systems using Dynamic Invariants. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1023–1030.

Modern cyber-physical systems are increasingly complex and vulnerable to attacks like false data injection aimed at destabilizing and confusing the systems. We develop and evaluate an attack-detection framework aimed at learning a dynamic invariant network, data-driven temporal causal relationships between components of cyber-physical systems. We evaluate the relative performance in attack detection of the proposed model relative to traditional anomaly detection approaches. In this paper, we introduce Granger Causality based Kalman Filter with Adaptive Robust Thresholding (G-KART) as a framework for anomaly detection based on data-driven functional relationships between components in cyber-physical systems. In particular, we select power systems as a critical infrastructure with complex cyber-physical systems whose protection is an essential facet of national security. The system presented is capable of learning with or without network topology the task of detection of false data injection attacks in power systems. Kalman filters are used to learn and update the dynamic state of each component in the power system and in-turn monitor the component for malicious activity. The ego network for each node in the invariant graph is treated as an ensemble model of Kalman filters, each of which captures a subset of the node's interactions with other parts of the network. We finally also introduce an alerting mechanism to surface alerts about compromised nodes.

Huang, Xing-De, Fu, Chen-Zhao, Su, Lei, Zhao, Dan-Dan, Xiao, Rong, Lu, Qi-Yu, Si, Wen-Rong.  2019.  Research on a General Fast Analysis Algorithm Model for Pd Acoustic Detection System: The Software Development. 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :671–675.
At present, the AE method has the advantages of live measurement, online monitoring and easy fault location, so it is very suitable for insulation defect detection of power equipments such as GIS, etc. In this paper, development of a data processing software for PD acoustic detection based on a general fast analysis algorithm model is introduced. With considering the signal flow chart of current acoustic detection system widely used in operation and maintenance of power system equipments, the main function of the developed PD AE signals analysis software was designed, including the detailed analysis of individual data file, identification with phase compensation based on 2D PRPD histograms, batch processing analysis of data files, management of discharge fingerprint library and display of typical defect discharge data. And all of the corresponding developed software pages are displayed.
Si, Wen-Rong, Fu, Chen-Zhao, Gao, Kai, Zhang, Jia-Min, He, Lin, Bao, Hai-Long, Wu, Xin-Ye.  2019.  Research on a General Fast Analysis Algorithm Model for Pd Acoustic Detection System: The Algorithm Model Design and Its Application. 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA). :22–26.
Nowadays, the detection of acoustical emission is widely used for fault diagnosis of gas insulated substations (GIS) in normal operation and factory tests, which is called 'non-conventional' method recommended in the standard IEC TS 62478-2016 and GIGRE D1.33 444. In this paper, to develop a data analyzer for acoustic detection (AD) system to make an assistant diagnosis for technical personnel or equipment operation and maintenance personnel, based on the previous research on the experimental research, pattern identification with phase compensation and the software development, the algorithm model design and its application is given in detail. For the acoustical emission signals (n, ti, qi), the BP artificial neural network optimized by genetic algorithm (GA-BP) is used as a classifier based on the fingerprint consisting of several statistic operators, which are derivate form typical 2D histograms of PRPD with identification with phase compensation (IPC). Experimental results show that the comprehensive algorithm model designed for identification is practical and effective.
2020-07-27
Babay, Amy, Schultz, John, Tantillo, Thomas, Amir, Yair.  2018.  Toward an Intrusion-Tolerant Power Grid: Challenges and Opportunities. 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). :1321–1326.
While cyberattacks pose a relatively new challenge for power grid control systems, commercial cloud systems have needed to address similar threats for many years. However, technology and approaches developed for cloud systems do not necessarily transfer directly to the power grid, due to important differences between the two domains. We discuss our experience adapting intrusion-tolerant cloud technologies to the power domain and describe the challenges we have encountered and potential directions for overcoming those obstacles.
Liu, Dongqi.  2018.  A Creditability-based Intrusion Tolerant Method for Protection Equipment in Transformer Substations. 2018 China International Conference on Electricity Distribution (CICED). :1489–1492.
With the development of the interconnection of all things(IoT), a large number of mobile terminal devices with multiple users access the distribution network, and gradually form an open and interconnected network environment, which brings new challenges to the security and protection of the distribution network. In this paper, a method of analyzing the sensing data of the digital substation is proposed, which can prevent the abnormal data from causing the malfunction of the protective relays by calculating the creditability of the sensing data. Creditability calculation algorithm as well as the implementation of the intrusion tolerance strategy are studied throughout the paper. The simulation results show that the proposed creditability-based intrusion-tolerant(CIT) algorithm can ensure that the protective equipment have no protective malfunction from the false instructions or false data attacks, and the proposed intrusion tolerant algorithm has little affect on the real-time performance of the original protection algorithm, hence it has some practical value.
2020-07-24
Obert, James, Chavez, Adrian.  2019.  Graph-Based Event Classification in Grid Security Gateways. 2019 Second International Conference on Artificial Intelligence for Industries (AI4I). :63—66.
In recent years the use of security gateways (SG) located within the electrical grid distribution network has become pervasive. SGs in substations and renewable distributed energy resource aggregators (DERAs) protect power distribution control devices from cyber and cyber-physical attacks. When encrypted communications within a DER network is used, TCP/IP packet inspection is restricted to packet header behavioral analysis which in most cases only allows the SG to perform anomaly detection of blocks of time-series data (event windows). Packet header anomaly detection calculates the probability of the presence of a threat within an event window, but fails in such cases where the unreadable encrypted payload contains the attack content. The SG system log (syslog) is a time-series record of behavioral patterns of network users and processes accessing and transferring data through the SG network interfaces. Threatening behavioral pattern in the syslog are measurable using both anomaly detection and graph theory. In this paper it will be shown that it is possible to efficiently detect the presence of and classify a potential threat within an SG syslog using light-weight anomaly detection and graph theory.
Navya, J M, Sanjay, H A, Deepika, KM.  2018.  Securing smart grid data under key exposure and revocation in cloud computing. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C). :1—4.
Smart grid systems data has been exposed to several threats and attacks from different perspectives and have resulted in several system failures. Obtaining security of data and key exposure and enhancing system ability in data collection and transmission process are challenging, on the grounds smart grid data is sensitive and enormous sum. In this paper we introduce smart grid data security method along with advanced Cipher text policy attribute based encryption (CP-ABE). Cloud supported IoT is widely used in smart grid systems. Smart IoT devices collect data and perform status management. Data obtained from the IOT devices will be divided into blocks and encrypted data will be stored in different cloud server with different encrypted keys even when one cloud server is assaulted and encrypted key is exposed data cannot be decrypted, thereby the transmission and encryption process are done in correspondingly. We protect access-tree structure information even after the data is shared to user by solving revocation problem in which cloud will inform data owner to revoke and update encryption key after user has downloaded the data, which preserves the data privacy from unauthorized users. The analysis of the system concludes that our proposed system can meet the security requirements in smart grid systems along with cloud-Internet of things.
2020-07-20
Jakaria, A H M, Rahman, Mohammad Ashiqur, Gokhale, Aniruddha.  2019.  A Formal Model for Resiliency-Aware Deployment of SDN: A SCADA-Based Case Study. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.

The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems.

2020-07-16
Ni, Ming, Xue, Yusheng, Tong, Heqin, Li, Manli.  2018.  A cyber physical power system co-simulation platform. 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—5.

With the tighter integration of power system and Information and Communication Technology (ICT), power grid is becoming a typical cyber physical system (CPS). It is important to analyze the impact of the cyber event on power system, so that it is necessary to build a co-simulation system for studying the interaction between power system and ICT. In this paper, a cyber physical power system (CPPS) co-simulation platform is proposed, which includes the hardware-in-the-loop (HIL) simulation function. By using flexible interface, various simulation software for power system and ICT can be interconnected into the platform to build co-simulation tools for various simulation purposes. To demonstrate it as a proof, one simulation framework for real life cyber-attack on power system control is introduced. In this case, the real life denial-of-service attack on a router in automatic voltage control (AVC) is simulated to demonstrate impact of cyber-attack on power system.

Balduccini, Marcello, Griffor, Edward, Huth, Michael, Vishik, Claire, Wollman, David, Kamongi, Patrick.  2019.  Decision Support for Smart Grid: Using Reasoning to Contextualize Complex Decision Making. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—6.

The smart grid is a complex cyber-physical system (CPS) that poses challenges related to scale, integration, interoperability, processes, governance, and human elements. The US National Institute of Standards and Technology (NIST) and its government, university and industry collaborators, developed an approach, called CPS Framework, to reasoning about CPS across multiple levels of concern and competency, including trustworthiness, privacy, reliability, and regulatory. The approach uses ontology and reasoning techniques to achieve a greater understanding of the interdependencies among the elements of the CPS Framework model applied to use cases. This paper demonstrates that the approach extends naturally to automated and manual decision-making for smart grids: we apply it to smart grid use cases, and illustrate how it can be used to analyze grid topologies and address concerns about the smart grid. Smart grid stakeholders, whose decision making may be assisted by this approach, include planners, designers and operators.

2020-07-06
Sheela, A., Revathi, S., Iqbal, Atif.  2019.  Cyber Risks Assessment For Intelligent And Non-Intelligent Attacks In Power System. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :40–45.
Smart power grid is a perfect model of Cyber Physical System (CPS) which is an important component for a comfortable life. The major concern of the electrical network is safety and reliable operation. A cyber attacker in the operation of power system would create a major damage to the entire power system structure and affect the continuity of the power supply by adversely changing its parameters. A risk assessment method is presented for evaluating the cyber security assessment of power systems taking into consideration the need for protection systems. The paper considers the impact of bus and transmission line protection systems located in substations on the cyber physical performance of power systems. The proposed method is to simulate the response of power systems to sudden attacks on various power system preset value and parameters. This paper focuses on the cyber attacks which occur in a co-ordinated way so that many power system components will be in risk. The risk can be modelled as the combined probability of power system impact due to attacks and of successful interruption into the system. Stochastic Petri Nets is employed for assessing the risks. The effectiveness of the proposed cyber security risk assessment method is simulated for a IEEE39 bus system.
Cerotti, D., Codetta-Raiteri, D., Egidi, L., Franceschinis, G., Portinale, L., Dondossola, G., Terruggia, R..  2019.  Analysis and Detection of Cyber Attack Processes targeting Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1–5.
This paper proposes an approach based on Bayesian Networks to support cyber security analysts in improving the cyber-security posture of the smart grid. We build a system model that exploits real world context information from both Information and Operational Technology environments in the smart grid, and we use it to demonstrate sample predictive and diagnostic analyses. The innovative contribution of this work is in the methodology capability of capturing the many dependencies involved in the assessment of security threats, and of supporting the security analysts in planning defense and detection mechanisms for energy digital infrastructures.
Castillo, Anya, Arguello, Bryan, Cruz, Gerardo, Swiler, Laura.  2019.  Cyber-Physical Emulation and Optimization of Worst-Case Cyber Attacks on the Power Grid. 2019 Resilience Week (RWS). 1:14–18.

In this paper we report preliminary results from the novel coupling of cyber-physical emulation and interdiction optimization to better understand the impact of a CrashOverride malware attack on a notional electric system. We conduct cyber experiments where CrashOverride issues commands to remote terminal units (RTUs) that are controlling substations within a power control area. We identify worst-case loss of load outcomes with cyber interdiction optimization; the proposed approach is a bilevel formulation that incorporates RTU mappings to controllable loads, transmission lines, and generators in the upper-level (attacker model), and a DC optimal power flow (DCOPF) in the lower-level (defender model). Overall, our preliminary results indicate that the interdiction optimization can guide the design of experiments instead of performing a “full factorial” approach. Likewise, for systems where there are important dependencies between SCADA/ICS controls and power grid operations, the cyber-physical emulations should drive improved parameterization and surrogate models that are applied in scalable optimization techniques.

2020-06-26
Nath, Anubhav, Biswas, Reetam Sen, Pal, Anamitra.  2019.  Application of Machine Learning for Online Dynamic Security Assessment in Presence of System Variability and Additive Instrumentation Errors. 2019 North American Power Symposium (NAPS). :1—6.
Large-scale blackouts that have occurred in the past few decades have necessitated the need to do extensive research in the field of grid security assessment. With the aid of synchrophasor technology, which uses phasor measurement unit (PMU) data, dynamic security assessment (DSA) can be performed online. However, existing applications of DSA are challenged by variability in system conditions and unaccounted for measurement errors. To overcome these challenges, this research develops a DSA scheme to provide security prediction in real-time for load profiles of different seasons in presence of realistic errors in the PMU measurements. The major contributions of this paper are: (1) develop a DSA scheme based on PMU data, (2) consider seasonal load profiles, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA with and without erroneous measurements. The performance of this approach is tested on the IEEE-118 bus system. Comparative analysis of the accuracies of the ML algorithms under different operating scenarios highlights the importance of considering realistic errors and variability in system conditions while creating a DSA scheme.
Jaiswal, Prajwal Kumar, Das, Sayari, Panigrahi, Bijaya Ketan.  2019.  PMU Based Data Driven Approach For Online Dynamic Security Assessment in Power Systems. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1—7.

This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.

2020-06-01
Ye, Yu, Guo, Jun, Xu, Xunjian, Li, Qinpu, Liu, Hong, Di, Yuelun.  2019.  High-risk Problem of Penetration Testing of Power Grid Rainstorm Disaster Artificial Intelligence Prediction System and Its Countermeasures. 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). :2675–2680.
System penetration testing is an important measure of discovering information system security issues. This paper summarizes and analyzes the high-risk problems found in the penetration testing of the artificial storm prediction system for power grid storm disasters from four aspects: application security, middleware security, host security and network security. In particular, in order to overcome the blindness of PGRDAIPS current SQL injection penetration test, this paper proposes a SQL blind bug based on improved second-order fragmentation reorganization. By modeling the SQL injection attack behavior and comparing the SQL injection vulnerability test in PGRDAIPS, this method can effectively reduce the blindness of SQL injection penetration test and improve its accuracy. With the prevalence of ubiquitous power internet of things, the electric power information system security defense work has to be taken seriously. This paper can not only guide the design, development and maintenance of disaster prediction information systems, but also provide security for the Energy Internet disaster safety and power meteorological service technology support.