Biblio
IEC 61850 is an international standard that is widely used in substation automation systems (SAS) in smart grids. During its development, security was not considered thus leaving SAS vulnerable to attacks from adversaries. IEC 62351 was developed to provide security recommendations for SAS against (distributed) denial-of-service, replay, alteration, spoofing and detection of devices attacks. However, real-time communications, which require protocols such as Generic Object-Oriented Substation Event (GOOSE) to function efficiently, cannot implement these recommendations due to latency constraints. There has been researching that sought to improve the security of GOOSE messages, however, some cannot be practically implemented due to hardware requirements while others are theoretical, even though latency requirements were met. This research investigates the possibility of encrypting GOOSE messages with One- Time Pads (OTP), leveraging the fact that encryption/decryption processes require the random generation of OTPs and modulo addition (XOR), which could be a realistic approach to secure GOOSE while maintaining latency requirements. Results show that GOOSE messages can be encrypted with some future work required.
Industrial control systems (ICS) are becoming more integral to modern life as they are being integrated into critical infrastructure. These systems typically lack application layer encryption and the placement of common network intrusion services have large blind spots. We propose the novel architecture, Cloud Based Intrusion Detection and Prevention System (CB-IDPS), to detect and prevent threats in ICS networks by using software defined networking (SDN) to route traffic to the cloud for inspection using network function virtualization (NFV) and service function chaining. CB-IDPS uses Amazon Web Services to create a virtual private cloud for packet inspection. The CB-IDPS framework is designed with considerations to the ICS delay constraints, dynamic traffic routing, scalability, resilience, and visibility. CB-IDPS is presented in the context of a micro grid energy management system as the test case to prove that the latency of CB-IDPS is within acceptable delay thresholds. The implementation of CB-IDPS uses the OpenDaylight software for the SDN controller and commonly used network security tools such as Zeek and Snort. To our knowledge, this is the first attempt at using NFV in an ICS context for network security.
While there has been considerable research on making power grid Supervisory Control and Data Acquisition (SCADA) systems resilient to attacks, the problem of transitioning these technologies into deployed SCADA systems remains largely unaddressed. We describe our experience and lessons learned in deploying an intrusion-tolerant SCADA system in two realistic environments: a red team experiment in 2017 and a power plant test deployment in 2018. These experiences resulted in technical lessons related to developing an intrusion-tolerant system with a real deployable application, preparing a system for deployment in a hostile environment, and supporting protocol assumptions in that hostile environment. We also discuss some meta-lessons regarding the cultural aspects of transitioning academic research into practice in the power industry.
The smart grid aims to improve the efficiency, reliability and safety of the electric system via modern communication system, it's necessary to utilize cloud computing to process and store the data. In fact, it's a promising paradigm to integrate smart grid into cloud computing. However, access to cloud computing system also brings data security issues. This paper focuses on the protection of user privacy in smart meter system based on data combination privacy and trusted third party. The paper demonstrates the security issues for smart grid communication system and cloud computing respectively, and illustrates the security issues for the integration. And we introduce data chunk storage and chunk relationship confusion to protect user privacy. We also propose a chunk information list system for inserting and searching data.
Despite the benefits offered by smart grids, energy producers, distributors and consumers are increasingly concerned about possible security and privacy threats. These threats typically manifest themselves at runtime as new usage scenarios arise and vulnerabilities are discovered. Adaptive security and privacy promise to address these threats by increasing awareness and automating prevention, detection and recovery from security and privacy requirements' failures at runtime by re-configuring system controls and perhaps even changing requirements. This paper discusses the need for adaptive security and privacy in smart grids by presenting some motivating scenarios. We then outline some research issues that arise in engineering adaptive security. We particularly scrutinize published reports by NIST on smart grid security and privacy as the basis for our discussions.
Processing smart grid data for analytics purposes brings about a series of privacy-related risks. In order to allow for the most suitable mitigation strategies, reasonable privacy risks need to be addressed by taking into consideration the perspective of each smart grid stakeholder separately. In this context, we use the notion of privacy concerns to reflect potential privacy risks from the perspective of different smart grid stakeholders. Privacy concerns help to derive privacy goals, which we represent using the goals structuring notation. Thus represented goals can more comprehensibly be addressed through technical and non-technical strategies and solutions. The thread of argumentation - from concerns to goals to strategies and solutions - is presented in form of a privacy case, which is analogous to the safety case used in the automotive domain. We provide an exemplar privacy case for the smart grid developed as part of the Aspern Smart City Research project.
Protecting energy consumers's data and privacy is a key factor for the further adoption and diffusion of smart grid technologies and applications. However, current smart grid initiatives and implementations around the globe tend to either focus on the need for technical security to the detriment of privacy or consider privacy as a feature to add after system design. This paper aims to contribute towards filling the gap between this fact and the accepted wisdom that privacy concerns should be addressed as early as possible (preferably when modeling system's requirements). We present a methodological framework for tackling privacy concerns throughout all phases of the smart grid system development process. We describe methods and guiding principles to help smart grid engineers to elicit and analyze privacy threats and requirements from the outset of the system development, and derive the best suitable countermeasures, i.e. privacy enhancing technologies (PETs), accordingly. The paper also provides a summary of modern PETs, and discusses their context of use and contributions with respect to the underlying privacy engineering challenges and the smart grid setting being considered.
Cascading failure, which can be triggered by both physical and cyber attacks, is among the most critical threats to the security and resilience of power grids. In current literature, researchers investigate the issue of cascading failure on smart grids mainly from the attacker's perspective. From the perspective of a grid defender or operator, however, it is also an important issue to restore the smart grid suffering from cascading failure back to normal operation as soon as possible. In this paper, we consider cascading failure in conjunction with the restoration process involving repairing of the failed nodes/links in a sequential fashion. Based on a realistic power flow cascading failure model, we exploit a Q-learning approach to develop a practical and effective policy to identify the optimal way of sequential restorations for large-scale smart grids. Simulation results on three power grid test benchmarks demonstrate the learning ability and the effectiveness of the proposed strategy.
The large amounts of synchrophasor data obtained by Phasor Measurement Units (PMUs) provide dynamic visibility into power systems. Extracting reliable information from the data can enhance power system situational awareness. The data quality often suffers from data losses, bad data, and cyber data attacks. Data privacy is also an increasing concern. In this paper, we discuss our recently proposed framework of data recovery, error correction, data privacy enhancement, and event identification methods by exploiting the intrinsic low-dimensional structures in the high-dimensional spatial-temporal blocks of PMU data. Our data-driven approaches are computationally efficient with provable analytical guarantees. The data recovery method can recover the ground-truth data even if simultaneous and consecutive data losses and errors happen across all PMU channels for some time. We can identify PMU channels that are under false data injection attacks by locating abnormal dynamics in the data. The data recovery method for the operator can extract the information accurately by collectively processing the privacy-preserving data from many PMUs. A cyber intruder with access to partial measurements cannot recover the data correctly even using the same approach. A real-time event identification method is also proposed, based on the new idea of characterizing an event by the low-dimensional subspace spanned by the dominant singular vectors of the data matrix.
Automatic optimal response systems are essential for preserving power system resilience and ensuring faster recovery from emergency under cyber compromise. Numerous research works have developed such response engine for cyber and physical system recovery separately. In this paper, we propose a novel cyber-physical decision support system, SCORE, that computes optimal actions considering pure and hybrid cyber-physical states, using Markov Decision Process (MDP). Such an automatic decision making engine can assist power system operators and network administrators to make a faster response to prevent cascading failures and attack escalation respectively. The hybrid nature of the engine makes the reward and state transition model of the MDP unique. Value iteration and policy iteration techniques are used to compute the optimal actions. Tests are performed on three and five substation power systems to recover from attacks that compromise relays to cause transmission line overflow. The paper also analyses the impact of reward and state transition model on computation. Corresponding results verify the efficacy of the proposed engine.
Software-defined networking (SDN) allows the smart grid to be centrally controlled and managed by decoupling the control plane from the data plane, but it also expands attack surface for attackers. Existing studies about the security of SDN-enabled smart grid (SDSG) mainly focused on static methods such as access control and identity authentication, which is vulnerable to attackers that carefully probe the system. As the attacks become more variable and complex, there is an urgent need for dynamic defense methods. In this paper, we propose a security function virtualization (SFV) based moving target defense of SDSG which makes the attack surface constantly changing. First, we design a dynamic defense mechanism by migrating virtual security function (VSF) instances as the traffic state changes. The centralized SDN controller is re-designed for global status monitoring and migration management. Moreover, we formalize the VSF instances migration problem as an integer nonlinear programming problem with multiple constraints and design a pre-migration algorithm to prevent VSF instances' resources from being exhausted. Simulation results indicate the feasibility of the proposed scheme.