Visible to the public Biblio

Found 191 results

Filters: Keyword is smart power grids  [Clear All Filters]
2015-05-01
Bin Hu, Gharavi, H..  2014.  Smart Grid Mesh Network Security Using Dynamic Key Distribution With Merkle Tree 4-Way Handshaking. Smart Grid, IEEE Transactions on. 5:550-558.

Distributed mesh sensor networks provide cost-effective communications for deployment in various smart grid domains, such as home area networks (HAN), neighborhood area networks (NAN), and substation/plant-generation local area networks. This paper introduces a dynamically updating key distribution strategy to enhance mesh network security against cyber attack. The scheme has been applied to two security protocols known as simultaneous authentication of equals (SAE) and efficient mesh security association (EMSA). Since both protocols utilize 4-way handshaking, we propose a Merkle-tree based handshaking scheme, which is capable of improving the resiliency of the network in a situation where an intruder carries a denial of service attack. Finally, by developing a denial of service attack model, we can then evaluate the security of the proposed schemes against cyber attack, as well as network performance in terms of delay and overhead.

Tsado, Y., Lund, D., Gamage, K..  2014.  Resilient wireless communication networking for Smart grid BAN. Energy Conference (ENERGYCON), 2014 IEEE International. :846-851.

The concept of Smart grid technology sets greater demands for reliability and resilience on communications infrastructure. Wireless communication is a promising alternative for distribution level, Home Area Network (HAN), smart metering and even the backbone networks that connect smart grid applications to control centres. In this paper, the reliability and resilience of smart grid communication network is analysed using the IEEE 802.11 communication technology in both infrastructure single hop and mesh multiple-hop topologies for smart meters in a Building Area Network (BAN). Performance of end to end delay and Round Trip Time (RTT) of an infrastructure mode smart meter network for Demand Response (DR) function is presented. Hybrid deployment of these network topologies is also suggested to provide resilience and redundancy in the network during network failure or when security of the network is circumvented. This recommendation can also be deployed in other areas of the grid where wireless technologies are used. DR communication from consumer premises is used to show the performance of an infrastructure mode smart metering network.

Albasrawi, M.N., Jarus, N., Joshi, K.A., Sarvestani, S.S..  2014.  Analysis of Reliability and Resilience for Smart Grids. Computer Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual. :529-534.

Smart grids, where cyber infrastructure is used to make power distribution more dependable and efficient, are prime examples of modern infrastructure systems. The cyber infrastructure provides monitoring and decision support intended to increase the dependability and efficiency of the system. This comes at the cost of vulnerability to accidental failures and malicious attacks, due to the greater extent of virtual and physical interconnection. Any failure can propagate more quickly and extensively, and as such, the net result could be lowered reliability. In this paper, we describe metrics for assessment of two phases of smart grid operation: the duration before a failure occurs, and the recovery phase after an inevitable failure. The former is characterized by reliability, which we determine based on information about cascading failures. The latter is quantified using resilience, which can in turn facilitate comparison of recovery strategies. We illustrate the application of these metrics to a smart grid based on the IEEE 9-bus test system.

Bo Chai, Zaiyue Yang, Jiming Chen.  2014.  Impacts of unreliable communication and regret matching based anti-jamming approach in smart grid. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Demand response management (DRM) is one of the main features in smart grid, which is realized via communications between power providers and consumers. Due to the vulnerabilities of communication channels, communication is not perfect in practice and will be threatened by jamming attack. In this paper, we consider jamming attack in the wireless communication for smart grid. Firstly, the DRM performance degradation introduced by unreliable communication is fully studied. Secondly, a regret matching based anti-jamming algorithm is proposed to enhance the performance of communication and DRM. Finally, numerical results are presented to illustrate the impacts of unreliable communication on DRM and the performance of the proposed anti-jamming algorithm.

Sierla, S., Hurkala, M., Charitoudi, K., Chen-Wei Yang, Vyatkin, V..  2014.  Security risk analysis for smart grid automation. Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on. :1737-1744.

The reliability theory used in the design of complex systems including electric grids assumes random component failures and is thus unsuited to analyzing security risks due to attackers that intentionally damage several components of the system. In this paper, a security risk analysis methodology is proposed consisting of vulnerability analysis and impact analysis. Vulnerability analysis is a method developed by security engineers to identify the attacks that are relevant for the system under study, and in this paper, the analysis is applied on the communications network topology of the electric grid automation system. Impact analysis is then performed through co-simulation of automation and the electric grid to assess the potential damage from the attacks. This paper makes an extensive review of vulnerability and impact analysis methods and relevant system modeling techniques from the fields of security and industrial automation engineering, with a focus on smart grid automation, and then applies and combines approaches to obtain a security risk analysis methodology. The methodology is demonstrated with a case study of fault location, isolation and supply restoration smart grid automation.

Chen, K.Y., Heckel-Jones, C.A.C., Maupin, N.G., Rubin, S.M., Bogdanor, J.M., Zhenyu Guo, Haimes, Y.Y..  2014.  Risk analysis of GPS-dependent critical infrastructure system of systems. Systems and Information Engineering Design Symposium (SIEDS), 2014. :316-321.

The Department of Energy seeks to modernize the U.S. electric grid through the SmartGrid initiative, which includes the use of Global Positioning System (GPS)-timing dependent electric phasor measurement units (PMUs) for continual monitoring and automated controls. The U.S. Department of Homeland Security is concerned with the associated risks of increased utilization of GPS timing in the electricity subsector, which could in turn affect a large number of electricity-dependent Critical Infrastructure (CI) sectors. Exploiting the vulnerabilities of GPS systems in the electricity subsector can result to large-scale and costly blackouts. This paper seeks to analyze the risks of increased dependence of GPS into the electric grid through the introduction of PMUs and provides a systems engineering perspective to the GPS-dependent System of Systems (S-o-S) created by the SmartGrid initiative. The team started by defining and modeling the S-o-S followed by usage of a risk analysis methodology to identify and measure risks and evaluate solutions to mitigating the effects of the risks. The team expects that the designs and models resulting from the study will prove useful in terms of determining both current and future risks to GPS-dependent CIs sectors along with the appropriate countermeasures as the United States moves towards a SmartGrid system.

Ming Shange, Jingqiang Lin, Xiaokun Zhang, Changwei Xu.  2014.  A game-theory analysis of the rat-group attack in smart grids. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on. :1-6.

More and more intelligent functions are proposed, designed and implemented in meters to make the power supply be smart. However, these complex functions also bring risks to the smart meters, and they become susceptible to vulnerabilities and attacks. We present the rat-group attack in this paper, which exploits the vulnerabilities of smart meters in the cyber world, but spreads in the physical world due to the direct economic benefits. To the best of our knowledge, no systematic work has been conducted on this attack. Game theory is then applied to analyze this attack, and two game models are proposed and compared under different assumptions. The analysis results suggest that the power company shall follow an open defense policy: disclosing the defense parameters to all users (i.e., the potential attackers), results in less loss in the attack.

Sgouras, K.I., Birda, A.D., Labridis, D.P..  2014.  Cyber attack impact on critical Smart Grid infrastructures. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.

Marashi, K., Sarvestani, S.S..  2014.  Towards Comprehensive Modeling of Reliability for Smart Grids: Requirements and Challenges. High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. :105-112.


Smart grids utilize computation and communication to improve the efficacy and dependability of power generation, transmission, and distribution. As such, they are among the most critical and complex cyber-physical systems. The success of smart grids in achieving their stated goals is yet to be rigorously proven. In this paper, our focus is on improvements (or lack thereof) in reliability. We discuss vulnerabilities in the smart grid and their potential impact on its reliability, both generally and for the specific example of the IEEE-14 bus system. We conclude the paper by presenting a preliminary Markov imbedded systems model for reliability of smart grids and describe how it can be evolved to capture the vulnerabilities discussed.
 

Shipman, C.M., Hopkinson, K.M., Lopez, J..  2015.  Con-Resistant Trust for Improved Reliability in a Smart-Grid Special Protection System. Power Delivery, IEEE Transactions on. 30:455-462.

This paper applies a con-resistant trust mechanism to improve the performance of a communications-based special protection system to enhance its effectiveness and resiliency. Smart grids incorporate modern information technologies to increase reliability and efficiency through better situational awareness. However, with the benefits of this new technology come the added risks associated with threats and vulnerabilities to the technology and to the critical infrastructure it supports. The research in this paper uses con-resistant trust to quickly identify malicious or malfunctioning (untrustworthy) protection system nodes to mitigate instabilities. The con-resistant trust mechanism allows protection system nodes to make trust assessments based on the node's cooperative and defective behaviors. These behaviors are observed via frequency readings which are prediodically reported. The trust architecture is tested in experiments by comparing a simulated special protection system with a con-resistant trust mechanism to one without the mechanism via an analysis of the variance statistical model. Simulation results show promise for the proposed con-resistant trust mechanism.

Yang, Y., McLaughlin, K., Sezer, S., Littler, T., Im, E.G., Pranggono, B., Wang, H.F..  2014.  Multiattribute SCADA-Specific Intrusion Detection System for Power Networks. Power Delivery, IEEE Transactions on. 29:1092-1102.

The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.

Chiaradonna, S., Di Giandomenico, F., Murru, N..  2014.  On a Modeling Approach to Analyze Resilience of a Smart Grid Infrastructure. Dependable Computing Conference (EDCC), 2014 Tenth European. :166-177.

The evolution of electrical grids, both in terms of enhanced ICT functionalities to improve efficiency, reliability and economics, as well as the increasing penetration of renewable redistributed energy resources, results in a more sophisticated electrical infrastructure which poses new challenges from several perspectives, including resilience and quality of service analysis. In addition, the presence of interdependencies, which more and more characterize critical infrastructures (including the power sector), exacerbates the need for advanced analysis approaches, to be possibly employed since the early phases of the system design, to identify vulnerabilities and appropriate countermeasures. In this paper, we outline an approach to model and analyze smart grids and discuss the major challenges to be addressed in stochastic model-based analysis to account for the peculiarities of the involved system elements. Representation of dynamic and flexible behavior of generators and loads, as well as representation of the complex ICT control functions required to preserve and/or re-establish electrical equilibrium in presence of changes need to be faced to assess suitable indicators of the resilience and quality of service of the smart grid.

Hong Liu, Huansheng Ning, Yan Zhang, Qingxu Xiong, Yang, L.T..  2014.  Role-Dependent Privacy Preservation for Secure V2G Networks in the Smart Grid. Information Forensics and Security, IEEE Transactions on. 9:208-220.

Vehicle-to-grid (V2G), involving both charging and discharging of battery vehicles (BVs), enhances the smart grid substantially to alleviate peaks in power consumption. In a V2G scenario, the communications between BVs and power grid may confront severe cyber security vulnerabilities. Traditionally, authentication mechanisms are solely designed for the BVs when they charge electricity as energy customers. In this paper, we first show that, when a BV interacts with the power grid, it may act in one of three roles: 1) energy demand (i.e., a customer); 2) energy storage; and 3) energy supply (i.e., a generator). In each role, we further demonstrate that the BV has dissimilar security and privacy concerns. Hence, the traditional approach that only considers BVs as energy customers is not universally applicable for the interactions in the smart grid. To address this new security challenge, we propose a role-dependent privacy preservation scheme (ROPS) to achieve secure interactions between a BV and power grid. In the ROPS, a set of interlinked subprotocols is proposed to incorporate different privacy considerations when a BV acts as a customer, storage, or a generator. We also outline both centralized and distributed discharging operations when a BV feeds energy back into the grid. Finally, security analysis is performed to indicate that the proposed ROPS owns required security and privacy properties and can be a highly potential security solution for V2G networks in the smart grid. The identified security challenge as well as the proposed ROPS scheme indicates that role-awareness is crucial for secure V2G networks.

2015-04-30
Zhuo Lu, Wenye Wang, Wang, C..  2015.  Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming. Dependable and Secure Computing, IEEE Transactions on. 12:31-44.

Smart grid is a cyber-physical system that integrates power infrastructures with information technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence, spread spectrum systems, which provide jamming resilience via multiple frequency and code channels, must be adapted to the smart grid for secure wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for timely smart grid communication under any potential jamming attack. To address this issue, we provide a paradigm shift from the case-by-case methodology, which is widely used in existing works to investigate well-adopted attack models, to the worst-case methodology, which offers delay performance guarantee for smart grid applications under any attack. We first define a generic jamming process that characterizes a wide range of existing attack models. Then, we show that in all strategies under the generic process, the worst-case message delay is a U-shaped function of network traffic load. This indicates that, interestingly, increasing a fair amount of traffic can in fact improve the worst-case delay performance. As a result, we demonstrate a lightweight yet promising system, transmitting adaptive camouflage traffic (TACT), to combat jamming attacks. TACT minimizes the message delay by generating extra traffic called camouflage to balance the network load at the optimum. Experiments show that TACT can decrease the probability that a message is not delivered on time in order of magnitude.

Manandhar, K., Xiaojun Cao, Fei Hu, Yao Liu.  2014.  Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter. Control of Network Systems, IEEE Transactions on. 1:370-379.

By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ2-detector or the proposed Euclidean detector. The χ2-detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ2-detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.

Manandhar, K., Xiaojun Cao, Fei Hu, Yao Liu.  2014.  Combating False Data Injection Attacks in Smart Grid using Kalman Filter. Computing, Networking and Communications (ICNC), 2014 International Conference on. :16-20.


The security of Smart Grid, being one of the very important aspects of the Smart Grid system, is studied in this paper. We first discuss different pitfalls in the security of the Smart Grid system considering the communication infrastructure among the sensors, actuators, and control systems. Following that, we derive a mathematical model of the system and propose a robust security framework for power grid. To effectively estimate the variables of a wide range of state processes in the model, we adopt Kalman Filter in the framework. The Kalman Filter estimates and system readings are then fed into the χ2-square detectors and the proposed Euclidean detectors, which can detect various attacks and faults in the power system including False Data Injection Attacks. The χ2-detector is a proven-effective exploratory method used with Kalman Filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks such as replay and DoS attacks. However, the study shows that the χ2-detector detectors are unable to detect statistically derived False Data Injection Attacks while the Euclidean distance metrics can identify such sophisticated injection attacks.