Visible to the public Biblio

Found 191 results

Filters: Keyword is smart power grids  [Clear All Filters]
2020-02-17
Aranha, Helder, Masi, Massimiliano, Pavleska, Tanja, Sellitto, Giovanni Paolo.  2019.  Enabling Security-by-Design in Smart Grids: An Architecture-Based Approach. 2019 15th European Dependable Computing Conference (EDCC). :177–179.

Energy Distribution Grids are considered critical infrastructure, hence the Distribution System Operators (DSOs) have developed sophisticated engineering practices to improve their resilience. Over the last years, due to the "Smart Grid" evolution, this infrastructure has become a distributed system where prosumers (the consumers who produce and share surplus energy through the grid) can plug in distributed energy resources (DERs) and manage a bi-directional flow of data and power enabled by an advanced IT and control infrastructure. This introduces new challenges, as the prosumers possess neither the skills nor the knowledge to assess the risk or secure the environment from cyber-threats. We propose a simple and usable approach based on the Reference Model of Information Assurance & Security (RMIAS), to support the prosumers in the selection of cybesecurity measures. The purpose is to reduce the risk of being directly targeted and to establish collective responsibility among prosumers as grid gatekeepers. The framework moves from a simple risk analysis based on security goals to providing guidelines for the users for adoption of adequate security countermeasures. One of the greatest advantages of the approach is that it does not constrain the user to a specific threat model.

Ganguly, Pallab, Nasipuri, Mita, Dutta, Sourav.  2019.  Challenges of the Existing Security Measures Deployed in the Smart Grid Framework. 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE). :1–5.
Due to the rise of huge population in mankind and the large variety of upcoming utilization of power, the energy requirement has substantially increased. Smart Grid is a very important part of the Smart Cities initiative and is one of the crucial components in distribution and reconciliation of energy. Security of the smart grid infrastructure, which is an integral part of the smart grid framework, intended at transitioning the conventional power grid system into a robust, reliable, adaptable and intelligent energy utility, is an impending problem that needs to be arrested quickly. With the increasingly intensifying integration of smart devices in the smart grid infrastructure with other interconnected applications and the communication backbone is compelling both the energy users and the energy utilities to thoroughly look into the privacy and security issues of the smart grid. In this paper, we present challenges of the existing security mechanisms deployed in the smart grid framework and we tried to bring forward the unresolved problems that would highlight the security aspects of Smart Grid as a challenging area of research and development in the future.
2020-02-10
Naseem, Faraz, Babun, Leonardo, Kaygusuz, Cengiz, Moquin, S.J., Farnell, Chris, Mantooth, Alan, Uluagac, A. Selcuk.  2019.  CSPoweR-Watch: A Cyber-Resilient Residential Power Management System. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :768–775.

Modern Energy Management Systems (EMS) are becoming increasingly complex in order to address the urgent issue of global energy consumption. These systems retrieve vital information from various Internet-connected resources in a smart grid to function effectively. However, relying on such resources results in them being susceptible to cyber attacks. Malicious actors can exploit the interconnections between the resources to perform nefarious tasks such as modifying critical firmware, sending bogus sensor data, or stealing sensitive information. To address this issue, we propose a novel framework that integrates PowerWatch, a solution that detects compromised devices in the smart grid with Cyber-secure Power Router (CSPR), a smart energy management system. The goal is to ascertain whether or not such a device has operated maliciously. To achieve this, PowerWatch utilizes a machine learning model that analyzes information from system and library call lists extracted from CSPR in order to detect malicious activity in the EMS. To test the efficacy of our framework, a number of unique attack scenarios were performed on a realistic testbed that comprises functional versions of CSPR and PowerWatch to monitor the electrical environment for suspicious activity. Our performance evaluation investigates the effectiveness of this first-of-its-kind merger and provides insight into the feasibility of developing future cybersecure EMS. The results of our experimental procedures yielded 100% accuracy for each of the attack scenarios. Finally, our implementation demonstrates that the integration of PowerWatch and CSPR is effective and yields minimal overhead to the EMS.

Muka, Romina, Haugli, Fredrik Bakkevig, Vefsnmo, Hanne, Heegaard, Poul E..  2019.  Information Inconsistencies in Smart Distribution Grids under Different Failure Causes modelled by Stochastic Activity Networks. 2019 AEIT International Annual Conference (AEIT). :1–6.
The ongoing digitalization of the power distribution grid will improve the operational support and automation which is believed to increase the system reliability. However, in an integrated and interdependent cyber-physical system, new threats appear which must be understood and dealt with. Of particular concern, in this paper, is the causes of an inconsistent view between the physical system (here power grid) and the Information and Communication Technology (ICT) system (here Distribution Management System). In this paper we align the taxonomy used in International Electrotechnical Commission (power eng.) and International Federation for Information Processing (ICT community), define a metric for inconsistencies, and present a modelling approach using Stochastic Activity Networks to assess the consequences of inconsistencies. The feasibility of the approach is demonstrated in a simple use case.
Shahinzadeh, Hossein, Moradi, Jalal, Gharehpetian, Gevork B., Nafisi, Hamed, Abedi, Mehrdad.  2019.  IoT Architecture for Smart Grids. 2019 International Conference on Protection and Automation of Power System (IPAPS). :22–30.
The tremendous advances in information and communications technology (ICT), as well as the embedded systems, have been led to the emergence of the novel concept of the internet of things (IoT). Enjoying IoT-based technologies, many objects and components can be connected to each other through the internet or other modern communicational platforms. Embedded systems which are computing machines for special purposes like those utilized in high-tech devices, smart buildings, aircraft, and vehicles including advanced controllers, sensors, and meters with the ability of information exchange using IT infrastructures. The phrase "internet", in this context, does not exclusively refer to the World Wide Web rather than any type of server-based or peer-to-peer networks. In this study, the application of IoT in smart grids is addressed. Hence, at first, an introduction to the necessity of deployment of IoT in smart grids is presented. Afterwards, the applications of IoT in three levels of generation, transmission, and distribution is proposed. The generation level is composed of applications of IoT in renewable energy resources, wind and solar in particular, thermal generation, and energy storage facilities. The deployment of IoT in transmission level deals with congestion management in power system and guarantees the security of the system. In the distribution level, the implications of IoT in active distribution networks, smart cities, microgrids, smart buildings, and industrial sector are evaluated.
Niu, Xiangyu, Li, Jiangnan, Sun, Jinyuan, Tomsovic, Kevin.  2019.  Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–6.
Modern advances in sensor, computing, and communication technologies enable various smart grid applications. The heavy dependence on communication technology has highlighted the vulnerability of the electricity grid to false data injection (FDI) attacks that can bypass bad data detection mechanisms. Existing mitigation in the power system either focus on redundant measurements or protect a set of basic measurements. These methods make specific assumptions about FDI attacks, which are often restrictive and inadequate to deal with modern cyber threats. In the proposed approach, a deep learning based framework is used to detect injected data measurement. Our time-series anomaly detector adopts a Convolutional Neural Network (CNN) and a Long Short Term Memory (LSTM) network. To effectively estimate system variables, our approach observes both data measurements and network level features to jointly learn system states. The proposed system is tested on IEEE 39-bus system. Experimental analysis shows that the deep learning algorithm can identify anomalies which cannot be detected by traditional state estimation bad data detection.
Neema, Himanshu, Vardhan, Harsh, Barreto, Carlos, Koutsoukos, Xenofon.  2019.  Web-Based Platform for Evaluation of Resilient and Transactive Smart-Grids. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Today's smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks.
Singh, Neeraj Kumar, Mahajan, Vasundhara.  2019.  Fuzzy Logic for Reducing Data Loss during Cyber Intrusion in Smart Grid Wireless Network. 2019 IEEE Student Conference on Research and Development (SCOReD). :192–197.
Smart grid consists of smart devices to control, record and analyze the grid power flow. All these devices belong to the latest technology, which is used to interact through the wireless network making the grid communication network vulnerable to cyber attack. This paper deals with a novel approach using altering the Internet Protocol (IP) address of the smart grid communication network using fuzzy logic according to the degree of node. Through graph theory approach Wireless Communication Network (WCN) is designed by considering each node of the system as a smart sensor. In this each node communicates with other nearby nodes for exchange of data. Whenever there is cyber intrusion the WCN change its IP using proposed fuzzy rules, where higher degree nodes are given the preference to change first with extreme IP available in the system. Using the proposed algorithm, different IEEE test systems are simulated and compared with existing Dynamic Host Configuration Protocol (DHCP). The fuzzy logic approach reduces the data loss and improves the system response time.
Gao, Jian, Bai, Huifeng, Wang, Dongshan, Wang, Licheng, Huo, Chao, Hou, Yingying.  2019.  Rapid Security Situation Prediction of Smart Grid Based on Markov Chain. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :2386–2389.

Based on Markov chain analysis method, the situation prediction of smart grid security and stability can be judged in this paper. First component state transition probability matrix and component state prediction were defined. A fast derivation method of Markov state transition probability matrix using in system state prediction was proposed. The Matlab program using this method was compiled to analyze and obtain the future state probability distribution of grid system. As a comparison the system state distribution was simulated based on sequential Monte Carlo method, which was in good agreement with the state transition matrix, and the validity of the method was verified. Furthermore, the situation prediction of the six-node example was analyzed, which provided an effective prediction and analysis tool for the security situation.

2020-01-27
Benmalek, Mourad, Challal, Yacine, Derhab, Abdelouahid.  2019.  An Improved Key Graph Based Key Management Scheme for Smart Grid AMI Systems. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.

In this paper, we focus on versatile and scalable key management for Advanced Metering Infrastructure (AMI) in Smart Grid (SG). We show that a recently proposed key graph based scheme for AMI systems (VerSAMI) suffers from efficiency flaws in its broadcast key management protocol. Then, we propose a new key management scheme (iVerSAMI) by modifying VerSAMI's key graph structure and proposing a new broadcast key update process. We analyze security and performance of the proposed broadcast key management in details to show that iVerSAMI is secure and efficient in terms of storage and communication overheads.

2020-01-21
Dong, Xiao, Li, Qianmu, Hou, Jun, Zhang, Jing, Liu, Yaozong.  2019.  Security Risk Control of Water Power Generation Industrial Control Network Based on Attack and Defense Map. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :232–236.

With the latest development of hydroelectric power generation system, the industrial control network system of hydroelectric power generation has undergone the transformation from the dedicated network, using proprietary protocols to an increasingly open network, adopting standard protocols, and increasing integration with hydroelectric power generation system. It generally believed that with the improvement of the smart grid, the future hydroelectric power generation system will rely more on the powerful network system. The general application of standardized communication protocol and intelligent electronic equipment in industrial control network provides a technical guarantee for realizing the intellectualization of hydroelectric power generation system but also brings about the network security problems that cannot be ignored. In order to solve the vulnerability of the system, we analyze and quantitatively evaluate the industrial control network of hydropower generation as a whole, and propose a set of attack and defense strategies. The method of vulnerability assessment with high diversity score proposed by us avoids the indifference of different vulnerability score to the greatest extent. At the same time, we propose an optimal attack and defense decision algorithm, which generates the optimal attack and defense strategy. The work of this paper can distinguish the actual hazards of vulnerable points more effectively.

2020-01-20
Liu, Donglan, Zhang, Hao, Wang, Wenting, Zhao, Yang, Zhao, Xiaohong, Yu, Hao, Lv, Guodong, Zhao, Yong.  2019.  Research on Protection for the Database Security Based on the Cloud of Smart Grid. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :585–589.

As cloud services enter the Internet market, cloud security issues are gradually exposed. In the era of knowledge economy, the unique potential value of big data is being gradually explored. However, the control of data security is facing many challenges. According to the development status and characteristics of database within the cloud environment, this paper preliminary studies on the database security risks faced by the “three-clouds” of State Grid Corporation of China. Based on the mature standardization of information security, this paper deeply studies the database security requirements of cloud environment, and six-step method for cloud database protection is presented, which plays an important role in promoting development of security work for the cloud database. Four key technologies of cloud database security protection are introduced, including database firewall technology, sensitive data encryption, production data desensitization, and database security audit technology. It is helpful to the technology popularization of the grade protection in the security of the cloud database, and plays a great role in the construction of the security of the state grid.

2020-01-13
van Kerkhoven, Jason, Charlebois, Nathaniel, Robertson, Alex, Gibson, Brydon, Ahmed, Arslan, Bouida, Zied, Ibnkahla, Mohamed.  2019.  IPv6-Based Smart Grid Communication over 6LoWPAN. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Smart Grid is a major element of the Smart City concept that enables two-way communication of energy data between electric utilities and their consumers. These communication technologies are going through sharp modernization to meet future demand growth and to achieve reliability, security, and efficiency of the electric grid. In this paper, we implement an IPv6 based two-way communication system between the transformer agent (TA), installed at local electric transformer and various customer agents (CAs), connected to customer's smart meter. Various homes share their energy usage with the TA which in turn sends the utility's recommendations to the CAs. Raspberry Pi is used as hardware for all the CAs and the TA. We implement a self-healing mesh network between all nodes using OpenLab IEEE 802.15.4 chips and Routing Protocol for Low-Power and Lossy Networks (RPL), and the data is secured by RSA/AES keys. Several tests have been conducted in real environments, inside and outside of Carleton University, to test the performance of this communication network in various obstacle settings. In this paper, we highlight the details behind the implementation of this IPv6-based smart grid communication system, the related challenges, and the proposed solutions.
2019-12-30
Iqbal, Maryam, Iqbal, Mohammad Ayman.  2019.  Attacks Due to False Data Injection in Smart Grids: Detection Protection. 2019 1st Global Power, Energy and Communication Conference (GPECOM). :451-455.

As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.

Zhang, Jiangfan.  2019.  Quickest Detection of Time-Varying False Data Injection Attacks in Dynamic Smart Grids. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2432-2436.

Quickest detection of false data injection attacks (FDIAs) in dynamic smart grids is considered in this paper. The unknown time-varying state variables of the smart grid and the FDIAs impose a significant challenge for designing a computationally efficient detector. To address this challenge, we propose new Cumulative-Sum-type algorithms with computational complex scaling linearly with the number of meters. Moreover, for any constraint on the expected false alarm period, a lower bound on the threshold employed in the proposed algorithm is provided. For any given threshold employed in the proposed algorithm, an upper bound on the worstcase expected detection delay is also derived. The proposed algorithm is numerically investigated in the context of an IEEE standard power system under FDIAs, and is shown to outperform some representative algorithm in the test case.

2019-12-05
Sahu, Abhijeet, Goulart, Ana.  2019.  Implementation of a C-UNB Module for NS-3 and Validation for DLMS-COSEM Application Layer Protocol. 2019 IEEE ComSoc International Communications Quality and Reliability Workshop (CQR). :1-6.

The number of sensors and embedded devices in an urban area can be on the order of thousands. New low-power wide area (LPWA) wireless network technologies have been proposed to support this large number of asynchronous, low-bandwidth devices. Among them, the Cooperative UltraNarrowband (C-UNB) is a clean-slate cellular network technology to connect these devices to a remote site or data collection server. C-UNB employs small bandwidth channels, and a lightweight random access protocol. In this paper, a new application is investigated - the use of C-UNB wireless networks to support the Advanced Metering Infrastructure (AMI), in order to facilitate the communication between smart meters and utilities. To this end, we adapted a mathematical model for C-UNB, and implemented a network simulation module in NS-3 to represent C-UNB's physical and medium access control layer. For the application layer, we implemented the DLMS-COSEM protocol, or Device Language Message Specification - Companion Specification for Energy Metering. Details of the simulation module are presented and we conclude that it supports the results of the mathematical model.

2019-12-02
Khan, Rafiullah, McLaughlin, Kieran, Laverty, John Hastings David, David, Hastings, Sezer, Sakir.  2018.  Demonstrating Cyber-Physical Attacks and Defense for Synchrophasor Technology in Smart Grid. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–10.
Synchrophasor technology is used for real-time control and monitoring in smart grid. Previous works in literature identified critical vulnerabilities in IEEE C37.118.2 synchrophasor communication standard. To protect synchrophasor-based systems, stealthy cyber-attacks and effective defense mechanisms still need to be investigated.This paper investigates how an attacker can develop a custom tool to execute stealthy man-in-the-middle attacks against synchrophasor devices. In particular, four different types of attack capabilities have been demonstrated in a real synchrophasor-based synchronous islanding testbed in laboratory: (i) command injection attack, (ii) packet drop attack, (iii) replay attack and (iv) stealthy data manipulation attack. With deep technical understanding of the attack capabilities and potential physical impacts, this paper also develops and tests a distributed Intrusion Detection System (IDS) following NIST recommendations. The functionalities of the proposed IDS have been validated in the testbed for detecting aforementioned cyber-attacks. The paper identified that a distributed IDS with decentralized decision making capability and the ability to learn system behavior could effectively detect stealthy malicious activities and improve synchrophasor network security.
2019-11-19
Ying, Huan, Zhang, Yanmiao, Han, Lifang, Cheng, Yushi, Li, Jiyuan, Ji, Xiaoyu, Xu, Wenyuan.  2019.  Detecting Buffer-Overflow Vulnerabilities in Smart Grid Devices via Automatic Static Analysis. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :813-817.

As a modern power transmission network, smart grid connects plenty of terminal devices. However, along with the growth of devices are the security threats. Different from the previous separated environment, an adversary nowadays can destroy the power system by attacking these devices. Therefore, it's critical to ensure the security and safety of terminal devices. To achieve this goal, detecting the pre-existing vulnerabilities of the device program and enhance the terminal security, are of great importance and necessity. In this paper, we propose a novel approach that detects existing buffer-overflow vulnerabilities of terminal devices via automatic static analysis (ASA). We utilize the static analysis to extract the device program information and build corresponding program models. By further matching the generated program model with pre-defined vulnerability patterns, we achieve vulnerability detection and error reporting. The evaluation results demonstrate that our method can effectively detect buffer-overflow vulnerabilities of smart terminals with a high accuracy and a low false positive rate.

2019-07-01
Akhtar, T., Gupta, B. B., Yamaguchi, S..  2018.  Malware propagation effects on SCADA system and smart power grid. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–6.

Critical infrastructures have suffered from different kind of cyber attacks over the years. Many of these attacks are performed using malwares by exploiting the vulnerabilities of these resources. Smart power grid is one of the major victim which suffered from these attacks and its SCADA system are frequently targeted. In this paper we describe our proposed framework to analyze smart power grid, while its SCADA system is under attack by malware. Malware propagation and its effects on SCADA system is the focal point of our analysis. OMNeT++ simulator and openDSS is used for developing and analyzing the simulated smart power grid environment.

2019-06-24
Cao, H., Liu, S., Guan, Z., Wu, L., Deng, H., Du, X..  2018.  An Efficient Privacy-Preserving Algorithm Based on Randomized Response in IoT-Based Smart Grid. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :881–886.

In this paper, we propose a new randomized response algorithm that can achieve differential-privacy and utility guarantees for consumer's behaviors, and process a batch of data at each time. Firstly, differing from traditional differential private approach-es, we add randomized response noise into the behavior signa-tures matrix to achieve an acceptable utility-privacy tradeoff. Secondly, a behavior signature modeling method based on sparse coding is proposed. After some lightweight trainings us-ing the energy consumption data, the dictionary will be associat-ed with the behavior characteristics of the electric appliances. At last, through the experimental results verification, we find that our Algorithm can preserve consumer's privacy without comprising utility.

You, Y., Li, Z., Oechtering, T. J..  2018.  Optimal Privacy-Enhancing And Cost-Efficient Energy Management Strategies For Smart Grid Consumers. 2018 IEEE Statistical Signal Processing Workshop (SSP). :826–830.

The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.

Okay, F. Y., Ozdemir, S..  2018.  A secure data aggregation protocol for fog computing based smart grids. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). :1–6.

In Smart Grids (SGs), data aggregation process is essential in terms of limiting packet size, data transmission amount and data storage requirements. This paper presents a novel Domingo-Ferrer additive privacy based Secure Data Aggregation (SDA) scheme for Fog Computing based SGs (FCSG). The proposed protocol achieves end-to-end confidentiality while ensuring low communication and storage overhead. Data aggregation is performed at fog layer to reduce the amount of data to be processed and stored at cloud servers. As a result, the proposed protocol achieves better response time and less computational overhead compared to existing solutions. Moreover, due to hierarchical architecture of FCSG and additive homomorphic encryption consumer privacy is protected from third parties. Theoretical analysis evaluates the effects of packet size and number of packets on transmission overhead and the amount of data stored in cloud server. In parallel with the theoretical analysis, our performance evaluation results show that there is a significant improvement in terms of data transmission and storage efficiency. Moreover, security analysis proves that the proposed scheme successfully ensures the privacy of collected data.

Oriero, E., Rahman, M. A..  2018.  Privacy Preserving Fine-Grained Data Distribution Aggregation for Smart Grid AMI Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1–9.

An advanced metering infrastructure (AMI) allows real-time fine-grained monitoring of the energy consumption data of individual consumers. Collected metering data can be used for a multitude of applications. For example, energy demand forecasting, based on the reported fine-grained consumption, can help manage the near future energy production. However, fine- grained metering data reporting can lead to privacy concerns. It is, therefore, imperative that the utility company receives the fine-grained data needed to perform the intended demand response service, without learning any sensitive information about individual consumers. In this paper, we propose an anonymous privacy preserving fine-grained data aggregation scheme for AMI networks. In this scheme, the utility company receives only the distribution of the energy consumption by the consumers at different time slots. We leverage a network tree topology structure in which each smart meter randomly reports its energy consumption data to its parent smart meter (according to the tree). The parent node updates the consumption distribution and forwards the data to the utility company. Our analysis results show that the proposed scheme can preserve the privacy and security of individual consumers while guaranteeing the demand response service.

Chouikhi, S., Merghem-Boulahia, L., Esseghir, M..  2018.  Energy Demand Scheduling Based on Game Theory for Microgrids. 2018 IEEE International Conference on Communications (ICC). :1–6.

The advent of smart grids offers us the opportunity to better manage the electricity grids. One of the most interesting challenges in the modern grids is the consumer demand management. Indeed, the development in Information and Communication Technologies (ICTs) encourages the development of demand-side management systems. In this paper, we propose a distributed energy demand scheduling approach that uses minimal interactions between consumers to optimize the energy demand. We formulate the consumption scheduling as a constrained optimization problem and use game theory to solve this problem. On one hand, the proposed approach aims to reduce the total energy cost of a building's consumers. This imposes the cooperation between all the consumers to achieve the collective goal. On the other hand, the privacy of each user must be protected, which means that our distributed approach must operate with a minimal information exchange. The performance evaluation shows that the proposed approach reduces the total energy cost, each consumer's individual cost, as well as the peak to average ratio.

Wang, J., Zhang, X., Zhang, H., Lin, H., Tode, H., Pan, M., Han, Z..  2018.  Data-Driven Optimization for Utility Providers with Differential Privacy of Users' Energy Profile. 2018 IEEE Global Communications Conference (GLOBECOM). :1–6.

Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.