Biblio
Energy Distribution Grids are considered critical infrastructure, hence the Distribution System Operators (DSOs) have developed sophisticated engineering practices to improve their resilience. Over the last years, due to the "Smart Grid" evolution, this infrastructure has become a distributed system where prosumers (the consumers who produce and share surplus energy through the grid) can plug in distributed energy resources (DERs) and manage a bi-directional flow of data and power enabled by an advanced IT and control infrastructure. This introduces new challenges, as the prosumers possess neither the skills nor the knowledge to assess the risk or secure the environment from cyber-threats. We propose a simple and usable approach based on the Reference Model of Information Assurance & Security (RMIAS), to support the prosumers in the selection of cybesecurity measures. The purpose is to reduce the risk of being directly targeted and to establish collective responsibility among prosumers as grid gatekeepers. The framework moves from a simple risk analysis based on security goals to providing guidelines for the users for adoption of adequate security countermeasures. One of the greatest advantages of the approach is that it does not constrain the user to a specific threat model.
Modern Energy Management Systems (EMS) are becoming increasingly complex in order to address the urgent issue of global energy consumption. These systems retrieve vital information from various Internet-connected resources in a smart grid to function effectively. However, relying on such resources results in them being susceptible to cyber attacks. Malicious actors can exploit the interconnections between the resources to perform nefarious tasks such as modifying critical firmware, sending bogus sensor data, or stealing sensitive information. To address this issue, we propose a novel framework that integrates PowerWatch, a solution that detects compromised devices in the smart grid with Cyber-secure Power Router (CSPR), a smart energy management system. The goal is to ascertain whether or not such a device has operated maliciously. To achieve this, PowerWatch utilizes a machine learning model that analyzes information from system and library call lists extracted from CSPR in order to detect malicious activity in the EMS. To test the efficacy of our framework, a number of unique attack scenarios were performed on a realistic testbed that comprises functional versions of CSPR and PowerWatch to monitor the electrical environment for suspicious activity. Our performance evaluation investigates the effectiveness of this first-of-its-kind merger and provides insight into the feasibility of developing future cybersecure EMS. The results of our experimental procedures yielded 100% accuracy for each of the attack scenarios. Finally, our implementation demonstrates that the integration of PowerWatch and CSPR is effective and yields minimal overhead to the EMS.
Based on Markov chain analysis method, the situation prediction of smart grid security and stability can be judged in this paper. First component state transition probability matrix and component state prediction were defined. A fast derivation method of Markov state transition probability matrix using in system state prediction was proposed. The Matlab program using this method was compiled to analyze and obtain the future state probability distribution of grid system. As a comparison the system state distribution was simulated based on sequential Monte Carlo method, which was in good agreement with the state transition matrix, and the validity of the method was verified. Furthermore, the situation prediction of the six-node example was analyzed, which provided an effective prediction and analysis tool for the security situation.
In this paper, we focus on versatile and scalable key management for Advanced Metering Infrastructure (AMI) in Smart Grid (SG). We show that a recently proposed key graph based scheme for AMI systems (VerSAMI) suffers from efficiency flaws in its broadcast key management protocol. Then, we propose a new key management scheme (iVerSAMI) by modifying VerSAMI's key graph structure and proposing a new broadcast key update process. We analyze security and performance of the proposed broadcast key management in details to show that iVerSAMI is secure and efficient in terms of storage and communication overheads.
With the latest development of hydroelectric power generation system, the industrial control network system of hydroelectric power generation has undergone the transformation from the dedicated network, using proprietary protocols to an increasingly open network, adopting standard protocols, and increasing integration with hydroelectric power generation system. It generally believed that with the improvement of the smart grid, the future hydroelectric power generation system will rely more on the powerful network system. The general application of standardized communication protocol and intelligent electronic equipment in industrial control network provides a technical guarantee for realizing the intellectualization of hydroelectric power generation system but also brings about the network security problems that cannot be ignored. In order to solve the vulnerability of the system, we analyze and quantitatively evaluate the industrial control network of hydropower generation as a whole, and propose a set of attack and defense strategies. The method of vulnerability assessment with high diversity score proposed by us avoids the indifference of different vulnerability score to the greatest extent. At the same time, we propose an optimal attack and defense decision algorithm, which generates the optimal attack and defense strategy. The work of this paper can distinguish the actual hazards of vulnerable points more effectively.
As cloud services enter the Internet market, cloud security issues are gradually exposed. In the era of knowledge economy, the unique potential value of big data is being gradually explored. However, the control of data security is facing many challenges. According to the development status and characteristics of database within the cloud environment, this paper preliminary studies on the database security risks faced by the “three-clouds” of State Grid Corporation of China. Based on the mature standardization of information security, this paper deeply studies the database security requirements of cloud environment, and six-step method for cloud database protection is presented, which plays an important role in promoting development of security work for the cloud database. Four key technologies of cloud database security protection are introduced, including database firewall technology, sensitive data encryption, production data desensitization, and database security audit technology. It is helpful to the technology popularization of the grade protection in the security of the cloud database, and plays a great role in the construction of the security of the state grid.
As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.
Quickest detection of false data injection attacks (FDIAs) in dynamic smart grids is considered in this paper. The unknown time-varying state variables of the smart grid and the FDIAs impose a significant challenge for designing a computationally efficient detector. To address this challenge, we propose new Cumulative-Sum-type algorithms with computational complex scaling linearly with the number of meters. Moreover, for any constraint on the expected false alarm period, a lower bound on the threshold employed in the proposed algorithm is provided. For any given threshold employed in the proposed algorithm, an upper bound on the worstcase expected detection delay is also derived. The proposed algorithm is numerically investigated in the context of an IEEE standard power system under FDIAs, and is shown to outperform some representative algorithm in the test case.
The number of sensors and embedded devices in an urban area can be on the order of thousands. New low-power wide area (LPWA) wireless network technologies have been proposed to support this large number of asynchronous, low-bandwidth devices. Among them, the Cooperative UltraNarrowband (C-UNB) is a clean-slate cellular network technology to connect these devices to a remote site or data collection server. C-UNB employs small bandwidth channels, and a lightweight random access protocol. In this paper, a new application is investigated - the use of C-UNB wireless networks to support the Advanced Metering Infrastructure (AMI), in order to facilitate the communication between smart meters and utilities. To this end, we adapted a mathematical model for C-UNB, and implemented a network simulation module in NS-3 to represent C-UNB's physical and medium access control layer. For the application layer, we implemented the DLMS-COSEM protocol, or Device Language Message Specification - Companion Specification for Energy Metering. Details of the simulation module are presented and we conclude that it supports the results of the mathematical model.
As a modern power transmission network, smart grid connects plenty of terminal devices. However, along with the growth of devices are the security threats. Different from the previous separated environment, an adversary nowadays can destroy the power system by attacking these devices. Therefore, it's critical to ensure the security and safety of terminal devices. To achieve this goal, detecting the pre-existing vulnerabilities of the device program and enhance the terminal security, are of great importance and necessity. In this paper, we propose a novel approach that detects existing buffer-overflow vulnerabilities of terminal devices via automatic static analysis (ASA). We utilize the static analysis to extract the device program information and build corresponding program models. By further matching the generated program model with pre-defined vulnerability patterns, we achieve vulnerability detection and error reporting. The evaluation results demonstrate that our method can effectively detect buffer-overflow vulnerabilities of smart terminals with a high accuracy and a low false positive rate.
Critical infrastructures have suffered from different kind of cyber attacks over the years. Many of these attacks are performed using malwares by exploiting the vulnerabilities of these resources. Smart power grid is one of the major victim which suffered from these attacks and its SCADA system are frequently targeted. In this paper we describe our proposed framework to analyze smart power grid, while its SCADA system is under attack by malware. Malware propagation and its effects on SCADA system is the focal point of our analysis. OMNeT++ simulator and openDSS is used for developing and analyzing the simulated smart power grid environment.
In this paper, we propose a new randomized response algorithm that can achieve differential-privacy and utility guarantees for consumer's behaviors, and process a batch of data at each time. Firstly, differing from traditional differential private approach-es, we add randomized response noise into the behavior signa-tures matrix to achieve an acceptable utility-privacy tradeoff. Secondly, a behavior signature modeling method based on sparse coding is proposed. After some lightweight trainings us-ing the energy consumption data, the dictionary will be associat-ed with the behavior characteristics of the electric appliances. At last, through the experimental results verification, we find that our Algorithm can preserve consumer's privacy without comprising utility.
The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.
In Smart Grids (SGs), data aggregation process is essential in terms of limiting packet size, data transmission amount and data storage requirements. This paper presents a novel Domingo-Ferrer additive privacy based Secure Data Aggregation (SDA) scheme for Fog Computing based SGs (FCSG). The proposed protocol achieves end-to-end confidentiality while ensuring low communication and storage overhead. Data aggregation is performed at fog layer to reduce the amount of data to be processed and stored at cloud servers. As a result, the proposed protocol achieves better response time and less computational overhead compared to existing solutions. Moreover, due to hierarchical architecture of FCSG and additive homomorphic encryption consumer privacy is protected from third parties. Theoretical analysis evaluates the effects of packet size and number of packets on transmission overhead and the amount of data stored in cloud server. In parallel with the theoretical analysis, our performance evaluation results show that there is a significant improvement in terms of data transmission and storage efficiency. Moreover, security analysis proves that the proposed scheme successfully ensures the privacy of collected data.
An advanced metering infrastructure (AMI) allows real-time fine-grained monitoring of the energy consumption data of individual consumers. Collected metering data can be used for a multitude of applications. For example, energy demand forecasting, based on the reported fine-grained consumption, can help manage the near future energy production. However, fine- grained metering data reporting can lead to privacy concerns. It is, therefore, imperative that the utility company receives the fine-grained data needed to perform the intended demand response service, without learning any sensitive information about individual consumers. In this paper, we propose an anonymous privacy preserving fine-grained data aggregation scheme for AMI networks. In this scheme, the utility company receives only the distribution of the energy consumption by the consumers at different time slots. We leverage a network tree topology structure in which each smart meter randomly reports its energy consumption data to its parent smart meter (according to the tree). The parent node updates the consumption distribution and forwards the data to the utility company. Our analysis results show that the proposed scheme can preserve the privacy and security of individual consumers while guaranteeing the demand response service.
The advent of smart grids offers us the opportunity to better manage the electricity grids. One of the most interesting challenges in the modern grids is the consumer demand management. Indeed, the development in Information and Communication Technologies (ICTs) encourages the development of demand-side management systems. In this paper, we propose a distributed energy demand scheduling approach that uses minimal interactions between consumers to optimize the energy demand. We formulate the consumption scheduling as a constrained optimization problem and use game theory to solve this problem. On one hand, the proposed approach aims to reduce the total energy cost of a building's consumers. This imposes the cooperation between all the consumers to achieve the collective goal. On the other hand, the privacy of each user must be protected, which means that our distributed approach must operate with a minimal information exchange. The performance evaluation shows that the proposed approach reduces the total energy cost, each consumer's individual cost, as well as the peak to average ratio.
Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.