Visible to the public Biblio

Found 191 results

Filters: Keyword is smart power grids  [Clear All Filters]
2020-10-05
Zhou, Xingyu, Li, Yi, Barreto, Carlos A., Li, Jiani, Volgyesi, Peter, Neema, Himanshu, Koutsoukos, Xenofon.  2019.  Evaluating Resilience of Grid Load Predictions under Stealthy Adversarial Attacks. 2019 Resilience Week (RWS). 1:206–212.
Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction loss while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network.
2020-09-28
Patsonakis, Christos, Terzi, Sofia, Moschos, Ioannis, Ioannidis, Dimosthenis, Votis, Konstantinos, Tzovaras, Dimitrios.  2019.  Permissioned Blockchains and Virtual Nodes for Reinforcing Trust Between Aggregators and Prosumers in Energy Demand Response Scenarios. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
The advancement and penetration of distributed energy resources (DERs) and renewable energy sources (RES) are transforming legacy energy systems in an attempt to reduce carbon emissions and energy waste. Demand Response (DR) has been identified as a key enabler of integrating these, and other, Smart Grid technologies, while, simultaneously, ensuring grid stability and secure energy supply. The massive deployment of smart meters, IoT devices and DERs dictate the need to move to decentralized, or even localized, DR schemes in the face of the increased scale and complexity of monitoring and coordinating the actors and devices in modern smart grids. Furthermore, there is an inherent need to guarantee interoperability, due to the vast number of, e.g., hardware and software stakeholders, and, more importantly, promote trust and incentivize the participation of customers in DR schemes, if they are to be successfully deployed.In this work, we illustrate the design of an energy system that addresses all of the roadblocks that hinder the large scale deployment of DR services. Our DR framework incorporates modern Smart Grid technologies, such as fog-enabled and IoT devices, DERs and RES to, among others, automate asset handling and various time-consuming workflows. To guarantee interoperability, our system employs OpenADR, which standardizes the communication of DR signals among energy stakeholders. Our approach acknowledges the need for decentralization and employs blockchains and smart contracts to deliver a secure, privacy-preserving, tamper-resistant, auditable and reliable DR framework. Blockchains provide the infrastructure to design innovative DR schemes and incentivize active consumer participation as their aforementioned properties promote transparency and trust. In addition, we harness the power of smart contracts which allows us to design and implement fully automated contractual agreements both among involved stakeholders, as well as on a machine-to-machine basis. Smart contracts are digital agents that "live" in the blockchain and can encode, execute and enforce arbitrary agreements. To illustrate the potential and effectiveness of our smart contract-based DR framework, we present a case study that describes the exchange of DR signals and the autonomous instantiation of smart contracts among involved participants to mediate and monitor transactions, enforce contractual clauses, regulate energy supply and handle payments/penalties.
Dcruz, Hans John, Kaliaperumal, Baskaran.  2018.  Analysis of Cyber-Physical Security in Electric Smart Grid : Survey and challenges. 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). :1–6.
With the advancement in technology, inclusion of Information and Communication Technology (ICT) in the conventional Electrical Power Grid has become evident. The combination of communication system with physical system makes it cyber-physical system (CPS). Though the advantages of this improvement in technology are numerous, there exist certain issues with the system. Security and privacy concerns of a CPS are a major field and research and the insight of which is content of this paper.
Fischinger, Michael, Egger, Norbert, Binder, Christoph, Neureiter, Christian.  2019.  Towards a Model-centric Approach for Developing Dependable Smart Grid Applications. 2019 4th International Conference on System Reliability and Safety (ICSRS). :1–9.
The Smart Grid is the leading example when talking about complex and critical System-of-Systems (SoS). Specifically regarding the Smart Grids criticality, dependability is a central quality attribute to strive for. Combined with the desire of agility in modern development, conventional systems engineering methods reach their limits in coping with these requirements. However, approaches from model-based or model-driven engineering can reduce complexity and encourage development with rapidly changing requirements. Model-Driven Engineering (MDE) is known to be more successful in a domain specific manner. For that reason, an approach for Domain Specific Systems Engineering (DSSE) in the Smart Grid has already been specially investigated. This Model-Driven Architecture (MDA) approach especially aims the comprehensibility of complex systems. In this context, the traceability of requirements is a centrally pursued attribute. However, achieving continuing traceability between the model of a system and the concrete implementation is still an open issue. To close this gap, the present research paper introduces a Model-Centric Software Development (MCSD) solution for Smart Grid applications. Based on two exploratory case studies, the focus finally lies on the automated generation of partial implementation artifacts and the evaluation of traceability, based on dedicated functional aspects.
2020-09-18
Chakrabarty, Shantanu, Sikdar, Biplab.  2019.  A Methodology for Detecting Stealthy Transformer Tap Command Injection Attacks in Smart Grids. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
On-Load Tap Changing transformers are a widely used voltage regulation device. In the context of modern or smart grids, the control signals, i.e., the tap change commands are sent through SCADA channels. It is well known that the power system SCADA networks are prone to attacks involving injection of false data or commands. While false data injection is well explored in existing literature, attacks involving malicious control signals/commands are relatively unexplored. In this paper, an algorithm is developed to detect a stealthily introduced malicious tap change command through a compromised SCADA channel. This algorithm is based on the observation that a stealthily introduced false data or command masks the true estimation of only a few state variables. This leaves the rest of the state variables to show signs of a change in system state brought about by the attack. Using this observation, an index is formulated based on the ratios of injection or branch currents to voltages of the terminal nodes of the tap changers. This index shows a significant increase when there is a false tap command injection, resulting in easy classification from normal scenarios where there is no attack. The algorithm is computationally light, easy to implement and reliable when tested extensively on several tap changers placed in an IEEE 118-bus system.
2020-09-14
Sani, Abubakar Sadiq, Yuan, Dong, Bao, Wei, Dong, Zhao Yang, Vucetic, Branka, Bertino, Elisa.  2019.  Universally Composable Key Bootstrapping and Secure Communication Protocols for the Energy Internet. IEEE Transactions on Information Forensics and Security. 14:2113–2127.
The Energy Internet is an advanced smart grid solution to increase energy efficiency by jointly operating multiple energy resources via the Internet. However, such an increasing integration of energy resources requires secure and efficient communication in the Energy Internet. To address such a requirement, we propose a new secure key bootstrapping protocol to support the integration and operation of energy resources. By using a universal composability model that provides a strong security notion for designing and analyzing cryptographic protocols, we define an ideal functionality that supports several cryptographic primitives used in this paper. Furthermore, we provide an ideal functionality for key bootstrapping and secure communication, which allows exchanged session keys to be used for secure communication in an ideal manner. We propose the first secure key bootstrapping protocol that enables a user to verify the identities of other users before key bootstrapping. We also present a secure communication protocol for unicast and multicast communications. The ideal functionalities help in the design and analysis of the proposed protocols. We perform some experiments to validate the performance of our protocols, and the results show that our protocols are superior to the existing related protocols and are suitable for the Energy Internet. As a proof of concept, we apply our functionalities to a practical key bootstrapping protocol, namely generic bootstrapping architecture.
2020-09-08
Chen, Yu-Cheng, Gieseking, Tim, Campbell, Dustin, Mooney, Vincent, Grijalva, Santiago.  2019.  A Hybrid Attack Model for Cyber-Physical Security Assessment in Electricity Grid. 2019 IEEE Texas Power and Energy Conference (TPEC). :1–6.
A detailed model of an attack on the power grid involves both a preparation stage as well as an execution stage of the attack. This paper introduces a novel Hybrid Attack Model (HAM) that combines Probabilistic Learning Attacker, Dynamic Defender (PLADD) model and a Markov Chain model to simulate the planning and execution stages of a bad data injection attack in power grid. We discuss the advantages and limitations of the prior work models and of our proposed Hybrid Attack Model and show that HAM is more effective compared to individual PLADD or Markov Chain models.
2020-08-28
Gayathri, Bhimavarapu, Yammani, Chandrasekhar.  2019.  Multi-Attacking Strategy on Smart Grid with Incomplete Network Information. 2019 8th International Conference on Power Systems (ICPS). :1—5.

The chances of cyber-attacks have been increased because of incorporation of communication networks and information technology in power system. Main objective of the paper is to prove that attacker can launch the attack vector without the knowledge of complete network information and the injected false data can't be detected by power system operator. This paper also deals with analyzing the impact of multi-attacking strategy on the power system. This false data attacks incurs lot of damage to power system, as it misguides the power system operator. Here, we demonstrate the construction of attack vector and later we have demonstrated multiple attacking regions in IEEE 14 bus system. Impact of attack vector on the power system can be observed and it is proved that the attack cannot be detected by power system operator with the help of residue check method.

2020-08-24
LV, Zhining, HU, Ziheng, NING, Baifeng, DING, Lifu, Yan, Gangfeng, SHI, Xiasheng.  2019.  Non-intrusive Runtime Monitoring for Power System Intelligent Terminal Based on Improved Deep Belief Networks (I-DBN). 2019 4th International Conference on Power and Renewable Energy (ICPRE). :361–365.
Power system intelligent terminal equipment is widely used in real-time monitoring, data acquisition, power management, power distribution and other tasks of smart grid. The power system intelligent terminal can obtain various information of users and power companies in the power grid, but there is still a lack of protection means for the connection and communication process of the terminal components. In this paper, a novel method based on improved deep belief network(IDBN) is proposed to accomplish the business-level security monitoring and attack detection of power system terminal. A non-intrusive business-level monitoring platform for power system terminals is established, which uses energy metering intelligent terminals as an example for non-intrusive data collection. Based on this platform, the I-DBN extracts the spatial and temporal attack characteristics of the external monitoring data of the system. Some fault conditions and cyber attacks of the model have been simulated to demonstrate the effectiveness of the proposed detection method and the results show excellent performance. The method and platform proposed in this paper can be extended to other services in the power industry, providing a theoretical basis and implementation method for realizing the security monitoring of power system intelligent terminals from the business level.
Yeboah-Ofori, Abel, Islam, Shareeful, Brimicombe, Allan.  2019.  Detecting Cyber Supply Chain Attacks on Cyber Physical Systems Using Bayesian Belief Network. 2019 International Conference on Cyber Security and Internet of Things (ICSIoT). :37–42.

Identifying cyberattack vectors on cyber supply chains (CSC) in the event of cyberattacks are very important in mitigating cybercrimes effectively on Cyber Physical Systems CPS. However, in the cyber security domain, the invincibility nature of cybercrimes makes it difficult and challenging to predict the threat probability and impact of cyber attacks. Although cybercrime phenomenon, risks, and treats contain a lot of unpredictability's, uncertainties and fuzziness, cyberattack detection should be practical, methodical and reasonable to be implemented. We explore Bayesian Belief Networks (BBN) as knowledge representation in artificial intelligence to be able to be formally applied probabilistic inference in the cyber security domain. The aim of this paper is to use Bayesian Belief Networks to detect cyberattacks on CSC in the CPS domain. We model cyberattacks using DAG method to determine the attack propagation. Further, we use a smart grid case study to demonstrate the applicability of attack and the cascading effects. The results show that BBN could be adapted to determine uncertainties in the event of cyberattacks in the CSC domain.

2020-08-07
Hasan, Kamrul, Shetty, Sachin, Ullah, Sharif.  2019.  Artificial Intelligence Empowered Cyber Threat Detection and Protection for Power Utilities. 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC). :354—359.
Cyber threats have increased extensively during the last decade, especially in smart grids. Cybercriminals have become more sophisticated. Current security controls are not enough to defend networks from the number of highly skilled cybercriminals. Cybercriminals have learned how to evade the most sophisticated tools, such as Intrusion Detection and Prevention Systems (IDPS), and Advanced Persistent Threat (APT) is almost invisible to current tools. Fortunately, the application of Artificial Intelligence (AI) may increase the detection rate of IDPS systems, and Machine Learning (ML) techniques can mine data to detect different attack stages of APT. However, the implementation of AI may bring other risks, and cybersecurity experts need to find a balance between risk and benefits.
2020-07-24
Navya, J M, Sanjay, H A, Deepika, KM.  2018.  Securing smart grid data under key exposure and revocation in cloud computing. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C). :1—4.
Smart grid systems data has been exposed to several threats and attacks from different perspectives and have resulted in several system failures. Obtaining security of data and key exposure and enhancing system ability in data collection and transmission process are challenging, on the grounds smart grid data is sensitive and enormous sum. In this paper we introduce smart grid data security method along with advanced Cipher text policy attribute based encryption (CP-ABE). Cloud supported IoT is widely used in smart grid systems. Smart IoT devices collect data and perform status management. Data obtained from the IOT devices will be divided into blocks and encrypted data will be stored in different cloud server with different encrypted keys even when one cloud server is assaulted and encrypted key is exposed data cannot be decrypted, thereby the transmission and encryption process are done in correspondingly. We protect access-tree structure information even after the data is shared to user by solving revocation problem in which cloud will inform data owner to revoke and update encryption key after user has downloaded the data, which preserves the data privacy from unauthorized users. The analysis of the system concludes that our proposed system can meet the security requirements in smart grid systems along with cloud-Internet of things.
2020-07-20
Jakaria, A H M, Rahman, Mohammad Ashiqur, Gokhale, Aniruddha.  2019.  A Formal Model for Resiliency-Aware Deployment of SDN: A SCADA-Based Case Study. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.

The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems.

2020-07-16
Ni, Ming, Xue, Yusheng, Tong, Heqin, Li, Manli.  2018.  A cyber physical power system co-simulation platform. 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—5.

With the tighter integration of power system and Information and Communication Technology (ICT), power grid is becoming a typical cyber physical system (CPS). It is important to analyze the impact of the cyber event on power system, so that it is necessary to build a co-simulation system for studying the interaction between power system and ICT. In this paper, a cyber physical power system (CPPS) co-simulation platform is proposed, which includes the hardware-in-the-loop (HIL) simulation function. By using flexible interface, various simulation software for power system and ICT can be interconnected into the platform to build co-simulation tools for various simulation purposes. To demonstrate it as a proof, one simulation framework for real life cyber-attack on power system control is introduced. In this case, the real life denial-of-service attack on a router in automatic voltage control (AVC) is simulated to demonstrate impact of cyber-attack on power system.

Balduccini, Marcello, Griffor, Edward, Huth, Michael, Vishik, Claire, Wollman, David, Kamongi, Patrick.  2019.  Decision Support for Smart Grid: Using Reasoning to Contextualize Complex Decision Making. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—6.

The smart grid is a complex cyber-physical system (CPS) that poses challenges related to scale, integration, interoperability, processes, governance, and human elements. The US National Institute of Standards and Technology (NIST) and its government, university and industry collaborators, developed an approach, called CPS Framework, to reasoning about CPS across multiple levels of concern and competency, including trustworthiness, privacy, reliability, and regulatory. The approach uses ontology and reasoning techniques to achieve a greater understanding of the interdependencies among the elements of the CPS Framework model applied to use cases. This paper demonstrates that the approach extends naturally to automated and manual decision-making for smart grids: we apply it to smart grid use cases, and illustrate how it can be used to analyze grid topologies and address concerns about the smart grid. Smart grid stakeholders, whose decision making may be assisted by this approach, include planners, designers and operators.

Singh, Vivek Kumar, Govindarasu, Manimaran, Porschet, Donald, Shaffer, Edward, Berman, Morris.  2019.  Distributed Power System Simulation using Cyber-Physical Testbed Federation: Architecture, Modeling, and Evaluation. 2019 Resilience Week (RWS). 1:26—32.

Development of an attack-resilient smart grid depends heavily on the availability of a representative environment, such as a Cyber Physical Security (CPS) testbed, to accelerate the transition of state-of-the-art research work to industry deployment by experimental testing and validation. There is an ongoing initiative to develop an interconnected federated testbed to build advanced computing systems and integrated data sharing networks. In this paper, we present a distributed simulation for power system using federated testbed in the context of Wide Area Monitoring System (WAMS) cyber-physical security. In particular, we have applied the transmission line modeling (TLM) technique to split a first order two-bus system into two subsystems: source and load subsystems, which are running in geographically dispersed simulators, while exchanging system variables over the internet. We have leveraged the resources available at Iowa State University's Power Cyber Laboratory (ISU PCL) and the US Army Research Laboratory (US ARL) to perform the distributed simulation, emulate substation and control center networks, and further implement a data integrity attack and physical disturbances targeting WAMS application. Our experimental results reveal the computed wide-area network latency; and model validation errors. Further, we also discuss the high-level conceptual architecture, inspired by NASPInet, necessary for developing the CPS testbed federation.

2020-07-06
Sheela, A., Revathi, S., Iqbal, Atif.  2019.  Cyber Risks Assessment For Intelligent And Non-Intelligent Attacks In Power System. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :40–45.
Smart power grid is a perfect model of Cyber Physical System (CPS) which is an important component for a comfortable life. The major concern of the electrical network is safety and reliable operation. A cyber attacker in the operation of power system would create a major damage to the entire power system structure and affect the continuity of the power supply by adversely changing its parameters. A risk assessment method is presented for evaluating the cyber security assessment of power systems taking into consideration the need for protection systems. The paper considers the impact of bus and transmission line protection systems located in substations on the cyber physical performance of power systems. The proposed method is to simulate the response of power systems to sudden attacks on various power system preset value and parameters. This paper focuses on the cyber attacks which occur in a co-ordinated way so that many power system components will be in risk. The risk can be modelled as the combined probability of power system impact due to attacks and of successful interruption into the system. Stochastic Petri Nets is employed for assessing the risks. The effectiveness of the proposed cyber security risk assessment method is simulated for a IEEE39 bus system.
Cerotti, D., Codetta-Raiteri, D., Egidi, L., Franceschinis, G., Portinale, L., Dondossola, G., Terruggia, R..  2019.  Analysis and Detection of Cyber Attack Processes targeting Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1–5.
This paper proposes an approach based on Bayesian Networks to support cyber security analysts in improving the cyber-security posture of the smart grid. We build a system model that exploits real world context information from both Information and Operational Technology environments in the smart grid, and we use it to demonstrate sample predictive and diagnostic analyses. The innovative contribution of this work is in the methodology capability of capturing the many dependencies involved in the assessment of security threats, and of supporting the security analysts in planning defense and detection mechanisms for energy digital infrastructures.
2020-06-01
Zhang, Tianchen, Zhang, Taimin, Ji, Xiaoyu, Xu, Wenyuan.  2019.  Cuckoo-RPL: Cuckoo Filter based RPL for Defending AMI Network from Blackhole Attacks. 2019 Chinese Control Conference (CCC). :8920—8925.

Advanced metering infrastructure (AMI) is a key component in the smart grid. Transmitting data robustly and reliably between the tremendous smart meters in the AMI is one of the most crucial tasks for providing various services in smart grid. Among the many efforts for designing practical routing protocols for the AMI, the Routing Protocol for Low-Power and Lossy Networks (RPL) proposed by the IETF ROLL working group is considered the most consolidated candidate. Resent research has shown cyber attacks such as blackhole attack and version number attack can seriously damage the performance of the network implementing RPL. The main reason that RPL is vulnerable to these kinds of attacks is the lack an authentication mechanism. In this paper, we study the impact of blackhole attacks on the performance of the AMI network and proposed a new blackhole attack that can bypass the existing defense mechanism. Then, we propose a cuckoo filter based RPL to defend the AMI network from blackhole attacks. We also give the security analysis of the proposed method.

2020-05-08
Boakye-Boateng, Kwasi, Lashkari, Arash Habibi.  2019.  Securing GOOSE: The Return of One-Time Pads. 2019 International Carnahan Conference on Security Technology (ICCST). :1—8.

IEC 61850 is an international standard that is widely used in substation automation systems (SAS) in smart grids. During its development, security was not considered thus leaving SAS vulnerable to attacks from adversaries. IEC 62351 was developed to provide security recommendations for SAS against (distributed) denial-of-service, replay, alteration, spoofing and detection of devices attacks. However, real-time communications, which require protocols such as Generic Object-Oriented Substation Event (GOOSE) to function efficiently, cannot implement these recommendations due to latency constraints. There has been researching that sought to improve the security of GOOSE messages, however, some cannot be practically implemented due to hardware requirements while others are theoretical, even though latency requirements were met. This research investigates the possibility of encrypting GOOSE messages with One- Time Pads (OTP), leveraging the fact that encryption/decryption processes require the random generation of OTPs and modulo addition (XOR), which could be a realistic approach to secure GOOSE while maintaining latency requirements. Results show that GOOSE messages can be encrypted with some future work required.

2020-04-24
Jiang, He, Wang, Zhenhua, He, Haibo.  2019.  An Evolutionary Computation Approach for Smart Grid Cascading Failure Vulnerability Analysis. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :332—338.
The cyber-physical security of smart grid is of great importance since it directly concerns the normal operating of a system. Recently, researchers found that organized sequential attacks can incur large-scale cascading failure to the smart grid. In this paper, we focus on the line-switching sequential attack, where the attacker aims to trip transmission lines in a designed order to cause significant system failures. Our objective is to identify the critical line-switching attack sequence, which can be instructional for the protection of smart grid. For this purpose, we develop an evolutionary computation based vulnerability analysis framework, which employs particle swarm optimization to search the critical attack sequence. Simulation studies on two benchmark systems, i.e., IEEE 24 bus reliability test system and Washington 30 bus dynamic test system, are implemented to evaluate the performance of our proposed method. Simulation results show that our method can yield a better performance comparing with the reinforcement learning based approach proposed in other prior work.
Pan, Huan, Lian, Honghui, Na, Chunning.  2019.  Vulnerability Analysis of Smart Grid under Community Attack Style. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:5971—5976.
The smart grid consists of two parts, one is the physical power grid, the other is the information network. In order to study the cascading failure, the vulnerability analysis of the smart grid is done under a kind of community attack style in this paper. Two types of information networks are considered, i.e. topology consistency and scale-free cyber networks, respectively. The concept of control center is presented and the controllable power nodes and observable power lines are defined. Minimum load reduction model(MLRM) is given and described as a linear programming problem. A index is introduced to assess the vulnerability. New England 39 nodes system is applied to simulate the cascading failure process to demonstrate the effectiveness of the proposed MLRM where community the attack methods include attack the power lines among and in power communities.
2020-03-16
Ren, Wenyu, Yu, Tuo, Yardley, Timothy, Nahrstedt, Klara.  2019.  CAPTAR: Causal-Polytree-based Anomaly Reasoning for SCADA Networks. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
The Supervisory Control and Data Acquisition (SCADA) system is the most commonly used industrial control system but is subject to a wide range of serious threats. Intrusion detection systems are deployed to promote the security of SCADA systems, but they continuously generate tremendous number of alerts without further comprehending them. There is a need for an efficient system to correlate alerts and discover attack strategies to provide explainable situational awareness to SCADA operators. In this paper, we present a causal-polytree-based anomaly reasoning framework for SCADA networks, named CAPTAR. CAPTAR takes the meta-alerts from our previous anomaly detection framework EDMAND, correlates the them using a naive Bayes classifier, and matches them to predefined causal polytrees. Utilizing Bayesian inference on the causal polytrees, CAPTAR can produces a high-level view of the security state of the protected SCADA network. Experiments on a prototype of CAPTAR proves its anomaly reasoning ability and its capabilities of satisfying the real-time reasoning requirement.
Radoglou-Grammatikis, Panagiotis, Sarigiannidis, Panagiotis, Giannoulakis, Ioannis, Kafetzakis, Emmanouil, Panaousis, Emmanouil.  2019.  Attacking IEC-60870-5-104 SCADA Systems. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:41–46.
The rapid evolution of the Information and Communications Technology (ICT) services transforms the conventional electrical grid into a new paradigm called Smart Grid (SG). Even though SG brings significant improvements, such as increased reliability and better energy management, it also introduces multiple security challenges. One of the main reasons for this is that SG combines a wide range of heterogeneous technologies, including Internet of Things (IoT) devices as well as Supervisory Control and Data Acquisition (SCADA) systems. The latter are responsible for monitoring and controlling the automatic procedures of energy transmission and distribution. Nevertheless, the presence of these systems introduces multiple vulnerabilities because their protocols do not implement essential security mechanisms such as authentication and access control. In this paper, we focus our attention on the security issues of the IEC 60870-5-104 (IEC-104) protocol, which is widely utilized in the European energy sector. In particular, we provide a SCADA threat model based on a Coloured Petri Net (CPN) and emulate four different types of cyber attacks against IEC-104. Last, we used AlienVault's risk assessment model to evaluate the risk level that each of these cyber attacks introduces to our system to confirm our intuition about their severity.
Eneh, Joy Nnenna, Onyekachi Orah, Harris, Emeka, Aka Benneth.  2019.  Improving the Reliability and Security of Active Distribution Networks Using SCADA Systems. 2019 IEEE PES/IAS PowerAfrica. :110–115.
The traditional electricity distribution system is rapidly shifting from the passive infrastructure to a more active infrastructure, giving rise to a smart grid. In this project an active electricity distribution network and its components have been studied. A 14-node SCADA-based active distribution network model has been proposed for managing this emerging network infrastructure to ensure reliability and protection of the network The proposed model was developed using matlab /simulink software and the fuzzy logic toolbox. Surge arresters and circuit breakers were modelled and deployed in the network at different locations for protection and isolation of fault conditions. From the reliability analysis of the proposed model, the failure rate and outage hours were reduced due to better response of the system to power fluctuations and fault conditions.