Tupakula, Uday, Karmakar, Kallol Krishna, Varadharajan, Vijay, Collins, Ben.
2022.
Implementation of Techniques for Enhancing Security of Southbound Infrastructure in SDN. 2022 13th International Conference on Network of the Future (NoF). :1–5.
In this paper we present techniques for enhancing the security of south bound infrastructure in SDN which includes OpenFlow switches and end hosts. In particular, the proposed security techniques have three main goals: (i) validation and secure configuration of flow rules in the OpenFlow switches by trusted SDN controller in the domain; (ii) securing the flows from the end hosts; and (iii) detecting attacks on the switches by malicious entities in the SDN domain. We have implemented the proposed security techniques as an application for ONOS SDN controller. We have also validated our application by detecting various OpenFlow switch specific attacks such as malicious flow rule insertions and modifications in the switches over a mininet emulated network.
ISSN: 2833-0072
Chen, Yichao, Liu, Guanbang, Zhang, Zhen, He, Lidong.
2022.
Secure Remote Control for Multi-UAV Systems: a Physical Layer Security Perspective. 2022 IEEE International Conference on Unmanned Systems (ICUS). :916–921.
Using multi-UAV systems to accomplish both civil and military missions is becoming a popular trend. With the development of software and hardware technologies, Unmanned aerial vehicles (UAVs) are now able to operate autonomously at edge. However, the remote control of manned systems, e.g., ground control station (GCS), remains essential to mission success, and the system's control and non-payload communication (CNPC) are facing severe cyber threats caused by smart attacks. To avoid hijacking, in this paper, we propose a secure mechanism that reduces such security risks for multi-UAV systems. We introduce friendly jamming from UAVs to block eavesdropping on the remote control channel. The trade-off between security and energy consumption is optimized by three approaches designed for UAV and GCS under algorithms of different complexities. Numerical results show the approach efficiency under different mission conditions and security demands, and demonstrate the features of the proposed mechanism for various scenarios.
ISSN: 2771-7372
Gopal, Kumar Parop, Sambath, M, Geetha, Angelina, Shekhar, Himanshu.
2022.
Implementing Fast Router In Convergent LTE/ Wifi Networks Using Software Defined Networks. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1–5.
The phenomenon known as "Internet ossification" describes the process through which certain components of the Internet’s older design have become immovable at the present time. This presents considerable challenges to the adoption of IPv6 and makes it hard to implement IP multicast services. For new applications such as data centers, cloud computing and virtualized networks, improved network availability, improved internal and external domain routing, and seamless user connectivity throughout the network are some of the advantages of Internet growth. To meet these needs, we've developed Software Defined Networking for the Future Internet (SDN). When compared to current networks, this new paradigm emphasizes control plane separation from network-forwarding components. To put it another way, this decoupling enables the installation of control plane software (such as Open Flow controller) on computer platforms that are substantially more powerful than traditional network equipment (such as switches/routers). This research describes Mininet’s routing techniques for a virtualized software-defined network. There are two obstacles to overcome when attempting to integrate SDN in an LTE/WiFi network. The first problem is that external network load monitoring tools must be used to measure QoS settings. Because of the increased demand for real-time load balancing methods, service providers cannot adopt QoS-based routing. In order to overcome these issues, this research suggests a router configuration method. Experiments have proved that the network coefficient matrix routing arrangement works, therefore it may provide an answer to the above-mentioned concerns. The Java-based SDN controller outperforms traditional routing systems by nine times on average highest sign to sound ratio. The study’s final finding suggests that the field’s future can be forecast. We must have a thorough understanding of this emerging paradigm to solve numerous difficulties, such as creating the Future Internet and dealing with its obliteration problem. In order to address these issues, we will first examine current technologies and a wide range of current and future SDN projects before delving into the most important issues in this field in depth.
Eftekhari Moghadam, Vahid, Prinetto, Paolo, Roascio, Gianluca.
2022.
Real-Time Control-Flow Integrity for Multicore Mixed-Criticality IoT Systems. 2022 IEEE European Test Symposium (ETS). :1–4.
The spread of the Internet of Things (IoT) and the use of smart control systems in many mission-critical or safety-critical applications domains, like automotive or aeronautical, make devices attractive targets for attackers. Nowadays, several of these are mixed-criticality systems, i.e., they run both high-criticality tasks (e.g., a car control system) and low-criticality ones (e.g., infotainment). High-criticality routines often employ Real-Time Operating Systems (RTOS) to enforce hard real-time requirements, while the tasks with lower constraints can be delegated to more generic-purpose operating systems (GPOS).Much of the control code for these devices is written in memory-unsafe languages such as C and C++. This makes them susceptible to powerful binary attacks, such as the famous Return-Oriented Programming (ROP). Control-Flow Integrity (CFI) is the most investigated security technique to protect against such threats. At now, CFI solutions for real-time embedded systems are not as mature as the ones for general-purpose systems, and even more, there is a lack of in-depth studies on how different operating systems with different security requirements and timing constraints can coexist on a single multicore platform.This paper aims at drawing attention to the subject, discussing the current scientific proposal, and in turn proposing a solution for an optimized asymmetric verification system for execution integrity. By using an embedded hypervisor, predefined cores could be dedicated to only high or low-criticality tasks, with the high-priority core being monitored by the lower-criticality core, relying on offline binary instrumentation and a light exchange of information and signals at runtime. The work also presents preliminary results about a possible implementation for multicore ARM platforms, running both RTOS and GPOS, both in terms of security and performance penalties.