Biblio
Industrial control systems (ICS) are systems used in critical infrastructures for supervisory control, data acquisition, and industrial automation. ICS systems have complex, component-based architectures with many different hardware, software, and human factors interacting in real time. Despite the importance of security concerns in industrial control systems, there has not been a comprehensive study that examined common security architectural weaknesses in this domain. Therefore, this paper presents the first in-depth analysis of 988 vulnerability advisory reports for Industrial Control Systems developed by 277 vendors. We performed a detailed analysis of the vulnerability reports to measure which components of ICS have been affected the most by known vulnerabilities, which security tactics were affected most often in ICS and what are the common architectural security weaknesses in these systems. Our key findings were: (1) Human-Machine Interfaces, SCADA configurations, and PLCs were the most affected components, (2) 62.86% of vulnerability disclosures in ICS had an architectural root cause, (3) the most common architectural weaknesses were “Improper Input Validation”, followed by “Im-proper Neutralization of Input During Web Page Generation” and “Improper Authentication”, and (4) most tactic-related vulnerabilities were related to the tactics “Validate Inputs”, “Authenticate Actors” and “Authorize Actors”.
Cybersecurity assurance plays an important role in managing trust in smart grid communication systems. In this paper, cybersecurity assurance controls for smart grid communication networks and devices are delineated from the more technical functional controls to provide insights on recent innovative risk-based approaches to cybersecurity assurance in smart grid systems. The cybersecurity assurance control baselining presented in this paper is based on requirements and guidelines of the new family of IEC 62443 standards on network and systems security of industrial automation and control systems. The paper illustrates how key cybersecurity control baselining and tailoring concepts of the U.S. NIST SP 800-53 can be adopted in smart grid security architecture. The paper outlines the application of IEC 62443 standards-based security zoning and assignment of security levels to the zones in smart grid system architectures. To manage trust in the smart grid system architecture, cybersecurity assurance base lining concepts are applied per security impact levels. Selection and justification of security assurance controls presented in the paper is utilizing the approach common in Security Technical Implementation Guides (STIGs) of the U.S. Defense Information Systems Agency. As shown in the paper, enhanced granularity for managing trust both on the overall system and subsystem levels of smart grid systems can be achieved by implementation of the instructions of the CNSSI 1253 of the U.S. Committee of National Security Systems on security categorization and control selection for national security systems.
Industrial control systems are changing from monolithic to distributed and interconnected architectures, entering the era of industrial IoT. One fundamental issue is that security properties of such distributed control systems are typically only verified empirically, during development and after system deployment. We propose a novel modelling framework for the security verification of distributed industrial control systems, with the goal of moving towards early design stage formal verification. In our framework we model industrial IoT infrastructures, attack patterns, and mitigation strategies for countering attacks. We conduct model checking-based formal analysis of system security through scenario execution, where the analysed system is exposed to attacks and implement mitigation strategies. We study the applicability of our framework for large systems using a scalability analysis.
With the progress over technology, it is becoming viable to set up mobile ad hoc networks for non-military services as like well. Examples consist of networks of cars, law about communication facilities into faraway areas, and exploiting the solidity between urban areas about present nodes such as cellular telephones according to offload or otherwise keep away from using base stations. In such networks, there is no strong motive according to assume as the nodes cooperate. Some nodes may also be disruptive and partial may additionally attempt according to save sources (e.g. battery power, memory, CPU cycles) through “selfish” behavior. The proposed method focuses on the robustness of packet forwarding: keeping the usual packet throughput over a mobile ad hoc network in the rear regarding nodes that misbehave at the routing layer. Proposed system listen at the routing layer or function no longer try after address attacks at lower layers (eg. jamming the network channel) and passive attacks kind of eavesdropping. Moreover such functionate now not bear together with issues kind of node authentication, securing routes, or message encryption. Proposed solution addresses an orthogonal problem the encouragement concerning proper routing participation.
Industrial control systems are the fundamental infrastructures of a country. Since the intrusion attack methods for industrial control systems have become complex and concealed, the traditional protection methods, such as vulnerability database, virus database and rule matching cannot cope with the attacks hidden inside the terminals of industrial control systems. In this work, we propose a control flow anomaly detection algorithm based on the control flow of the business programs. First, a basic group partition method based on key paths is proposed to reduce the performance burden caused by tabbed-assert control flow analysis method through expanding basic research units. Second, the algorithm phases of standard path set acquisition and path matching are introduced. By judging whether the current control flow path is deviating from the standard set or not, the abnormal operating conditions of industrial control can be detected. Finally, the effectiveness of a control flow anomaly detection (checking) algorithm based on Path Matching (CFCPM) is demonstrated by anomaly detection ability analysis and experiments.
Due to the wide implementation of communication networks, industrial control systems are vulnerable to malicious attacks, which could cause potentially devastating results. Adversaries launch integrity attacks by injecting false data into systems to create fake events or cover up the plan of damaging the systems. In addition, the complexity and nonlinearity of control systems make it more difficult to detect attacks and defense it. Therefore, a novel security situation awareness framework based on particle filtering, which has good ability in estimating state for nonlinear systems, is proposed to provide an accuracy understanding of system situation. First, a system state estimation based on particle filtering is presented to estimate nodes state. Then, a voting scheme is introduced into hazard situation detection to identify the malicious nodes and a local estimator is constructed to estimate the actual system state by removing the identified malicious nodes. Finally, based on the estimated actual state, the actual measurements of the compromised nodes are predicted by using the situation prediction algorithm. At the end of this paper, a simulation of a continuous stirred tank is conducted to verify the efficiency of the proposed framework and algorithms.
Collaborative smart services provide functionalities which exploit data collected from different sources to provide benefits to a community of users. Such data, however, might be privacy sensitive and their disclosure has to be avoided. In this paper, we present a distributed multi-tier framework intended for smart-environment management, based on usage control for policy evaluation and enforcement on devices belonging to different collaborating entities. The proposed framework exploits secure multi-party computation to evaluate policy conditions without disclosing actual value of evaluated attributes, to preserve privacy. As reference example, a smart-grid use case is presented.
This paper presents a review on how to benefit from software-defined networking (SDN) to enhance smart grid security. For this purpose, the attacks threatening traditional smart grid systems are classified according to availability, integrity, and confidentiality, which are the main cyber-security objectives. The traditional smart grid architecture is redefined with SDN and a conceptual model for SDN-based smart grid systems is proposed. SDN based solutions to the mentioned security threats are also classified and evaluated. Our conclusions suggest that SDN helps to improve smart grid security by providing real-time monitoring, programmability, wide-area security management, fast recovery from failures, distributed security and smart decision making based on big data analytics.
In recent years, there has been progress in applying information technology to industrial control systems (ICS), which is expected to make the development cost of control devices and systems lower. On the other hand, the security threats are becoming important problems. In 2017, a command injection issue on a data logger was reported. In this paper, we focus on the risk assessment in security design for data loggers used in industrial control systems. Our aim is to provide a risk assessment method optimized for control devices and systems in such a way that one can prioritize threats more preciously, that would lead work resource (time and budget) can be assigned for more important threats than others. We discuss problems with application of the automotive-security guideline of JASO TP15002 to ICS risk assessment. Consequently, we propose a three-phase risk assessment method with a novel Risk Scoring Systems (RSS) for quantitative risk assessment, RSS-CWSS. The idea behind this method is to apply CWSS scoring systems to RSS by fixing values for some of CWSS metrics, considering what the designers can evaluate during the concept phase. Our case study with ICS employing a data logger clarifies that RSS-CWSS can offer an interesting property that it has better risk-score dispersion than the TP15002-specified RSS.
This paper presents a sequence switching control (SSC) scheme for buck converters with a series-inductor auxiliary circuit, aiming at improving the load transient response. During an unloading transient, the series inductor is controlled as a small equivalent inductance so as to achieve a fast transient regulation. While in the steady state, the series inductor behaves as a large inductance to reduce the output current ripple. Furthermore, on the basis of the proposed variable inductance circuit, a SSC control scheme is proposed and implemented in a digital form. With the proposed control scheme the unloading transient event is divided into n+1 sub-periods, and in each sub-period, the capacitor-charge balance principle is used to determine the switching time sequence. Furthermore, its feasibility is validated in experiment with a 12V-3.3V low-voltage high-current synchronous buck converter. Experimental results demonstrate that the voltage overshoot of the proposed SSC scheme has improved more than 74% compared to that of the time-optimal control (TOC) scheme.
Cyber-attacks and intrusions in cyber-physical control systems are, currently, difficult to reliably prevent. Knowing a system's vulnerabilities and implementing static mitigations is not enough, since threats are advancing faster than the pace at which static cyber solutions can counteract. Accordingly, the practice of cybersecurity needs to ensure that intrusion and compromise do not result in system or environment damage or loss. In a previous paper [2], we described the Cyberspace Security Econometrics System (CSES), which is a stakeholder-aware and economics-based risk assessment method for cybersecurity. CSES allows an analyst to assess a system in terms of estimated loss resulting from security breakdowns. In this paper, we describe two new related contributions: 1) We map the Cyberspace Security Econometrics System (CSES) method to the evaluation and mitigation steps described by the NIST Guide to Industrial Control Systems (ICS) Security, Special Publication 800-82r2. Hence, presenting an economics-based and stakeholder-aware risk evaluation method for the implementation of the NIST-SP-800-82 guide; and 2) We describe the application of this tailored method through the use of a fictitious example of a critical infrastructure system of an electric and gas utility.
The eleven papers in this special section focus on power electronics-enabled autonomous systems. Power systems are going through a paradigm change from centralized generation to distributed generation and further onto smart grid. Millions of relatively small distributed energy resources (DER), including wind turbines, solar panels, electric vehicles and energy storage systems, and flexible loads are being integrated into power systems through power electronic converters. This imposes great challenges to the stability, scalability, reliability, security, and resiliency of future power systems. This section joins the forces of the communities of control/systems theory, power electronics, and power systems to address various emerging issues of power-electronics-enabled autonomous power systems, paving the way for large-scale deployment of DERs and flexible loads.
In an Internet of Things (IOT) network, each node (device) provides and requires services and with the growth in IOT, the number of nodes providing the same service have also increased, thus creating a problem of selecting one reliable service from among many providers. In this paper, we propose a scalable graph-based collaborative filtering recommendation algorithm, improved using trust to solve service selection problem, which can scale to match the growth in IOT unlike a central recommender which fails. Using this recommender, a node can predict its ratings for the nodes that are providing the required service and then select the best rated service provider.
In this paper we discuss the Internet of Things (IoT) by exploring aspects which go beyond the proliferation of devices and information enabled by: the growth of the Internet, increased miniaturization, prolonged battery life and an IT literate user base. We highlight the role of feedback mechanisms and illustrate this with reference to implemented computer enabled factory control systems. As the technology has developed, the cost of computing has reduced drastically, programming interfaces have improved, sensors are simpler and more cost effective and high performance communications across a wide area are readily available. We illustrate this by considering an application based on the Raspberry Pi, which is a low cost, small, programmable and network capable computer based on a powerful ARM processor with a programmable I/O interface, which can provide access to sensors (and other devices). The prototype application running on this platform can sense the presence of human being, using inexpensive passive infrared detectors. This can be used to monitor the activity of vulnerable adults, logging the results to a central server using a domestic Internet solution over a Wireless LAN. Whilst this demonstrates the potential for the use of such control/monitoring systems, practical systems spanning thousands of sites will be more complex to deliver and will have more stringent data processing and management demands and security requirements. We will discuss these concepts in the context of delivery of a smart interconnected society.
Poison message failure is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks. The poison message failure can propagate in the network and cause an unstable network. We apply a machine learning, data mining technique in the network fault management area. We use the k-nearest neighbor method to identity the poison message failure. We also propose a "probabilistic" k-nearest neighbor method which outputs a probability distribution about the poison message. Through extensive simulations, we show that the k-nearest neighbor method is very effective in identifying the responsible message type.
This paper aims to address the security challenges on physical unclonable functions (PUFs) raised by modeling attacks and denial of service (DoS) attacks. We develop a hardware isolation-based secure architecture extension, namely PUFSec, to protect the target PUF from security compromises without modifying the internal PUF design. PUFSec achieves the security protection by physically isolating the PUF hardware and data from the attack surfaces accessible by the adversaries. Furthermore, we deploy strictly enforced security policies within PUFSec, which authenticate the incoming PUF challenges and prevent attackers from collecting sufficient PUF responses to issue modeling attacks or interfering with the PUF workflow to launch DoS attacks. We implement our PUFSec framework on a Xilinx SoC equipped with ARM processor. Our experimental results on the real hardware prove the enhanced security and the low performance and power overhead brought by PUFSec.
Software Defined Networking (SDN) support several administrators for quicker access of resources due to its manageability, cost-effectiveness and adaptability. Even though SDN is beneficial it also exists with security based challenges due to many vulnerable threats. Participation of such threats increases their impact and risk level. In this paper a multi-level security mechanism is proposed over SDN architecture design. In each level the flow packet is analyzed using different metric and finally it reaches a secure controller for processing. Benign flow packets are differentiated from non-benign flow by means of the packet features. Initially routers verify user, secondly policies are verified by using dual-fuzzy logic design and thirdly controllers are authenticated using signature based authentication before assigning flow packets. This work aims to enhance entire security of developed SDN environment. SDN architecture is implemented in OMNeT++ simulation tool that supports OpenFlow switches and controllers. Finally experimental results show better performances in following performance metrics as throughput, time consumption and jitter.
Software Defined Networking (SDN) is an emerging paradigm that changes the way networks are managed by separating the control plane from data plane and making networks programmable. The separation brings about flexibility, automation, orchestration and offers savings in both capital and operational expenditure. Despite all the advantages offered by SDN it introduces new threats that did not exist before or were harder to exploit in traditional networks, making network penetration potentially easier. One of the key threat to SDN is the authentication and authorisation of network applications that control network behaviour (unlike the traditional network where network devices like routers and switches are autonomous and run proprietary software and protocols to control the network). This paper proposes a mechanism that helps the control layer authenticate network applications and set authorisation permissions that constrict manipulation of network resources.
SDN networks rely mainly on a set of software defined modules, running on generic hardware platforms, and managed by a central SDN controller. The tight coupling and lack of isolation between the controller and the underlying host limit the controller resilience against host-based attacks and failures. That controller is a single point of failure and a target for attackers. ``Linux-containers'' is a successful thin virtualization technique that enables encapsulated, host-isolated execution-environments for running applications. In this paper we present PAFR, a controller sandboxing mechanism based on Linux-containers. PAFR enables controller/host isolation, plug-and-play operation, failure-and-attack-resilient execution, and fast recovery. PAFR employs and manages live remote checkpointing and migration between different hosts to evade failures and attacks. Experiments and simulations show that the frequent employment of PAFR's live-migration minimizes the chance of successful attack/failure with limited to no impact on network performance.
Software Defined Networking (SDN) is a paradigm shift that changes the working principles of IP networks by separating the control logic from routers and switches, and logically centralizing it within a controller. In this architecture the control plane (controller) communicates with the data plane (switches) through a control channel using a standards-compliant protocol, that is, OpenFlow. While having a centralized controller creates an opportunity to monitor and program the entire network, as a side effect, it causes the control plane to become a single point of failure. Denial of service (DoS) attacks or even heavy control traffic conditions can easily become real threats to the proper functioning of the controller, which indirectly detriments the entire network. In this paper, we propose a solution to reduce the control traffic generated primarily during table-miss events. We utilize the buffer\_id feature of the OpenFlow protocol, which has been designed to identify individually buffered packets within a switch, reusing it to identify flows buffered as a series of packets during table-miss, which happens when there is no related rule in the switch flow tables that matches the received packet. Thus, we allow the OpenFlow switch to send only the first packet of a flow to the controller for a table-miss while buffering the rest of the packets in the switch memory until the controller responds or time out occurs. The test results show that OpenFlow traffic is significantly reduced when the proposed method is used.
Software Defined Networking (SDN) stands to transmute our modern networks and data centers, opening them up into highly agile frameworks that can be reconfigured depending on the requirement. Denial of Service (DoS) attacks are considered as one of the most destructive attacks. This paper, is about DoS attack detection and mitigation using SDN. DoS attack can minimize the bandwidth utilization, leaving the network unavailable for legitimate traffic. To provide a solution to the problem, concept of performance aware Software Defined Networking is used which involves real time network monitoring using sFlow as a visibility protocol. So, OpenFlow along with sFlow is used as an application to fight DoS attacks. Our analysis and results demonstrate that using this technique, DoS attacks are successfully defended implying that SDN has promising potential to detect and mitigate DoS attacks.
Predict software program reliability turns into a completely huge trouble in these days. Ordinary many new software programs are introducing inside the marketplace and some of them dealing with failures as their usage/managing is very hard. and plenty of shrewd strategies are already used to are expecting software program reliability. In this paper we're giving a sensible knowledge and the difference among those techniques with my new method. As a result, the prediction fashions constructed on one dataset display a extensive decrease in their accuracy when they are used with new statistics. The aim of this assessment, SE issues which can be of sensible importance are software development/cost estimation, software program reliability prediction, and so forth, and also computing its broaden computational equipment with enhanced power, scalability, flexibility and that can engage more successfully with human beings.