Biblio
The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).
Cloud, Software-Defined Networking (SDN), and Network Function Virtualization (NFV) technologies have introduced a new era of cybersecurity threats and challenges. To protect cloud infrastructure, in our earlier work, we proposed Software Defined Security Service (SDS2) to tackle security challenges centered around a new policy-based interaction model. The security architecture consists of three main components: a Security Controller, Virtual Security Functions (VSF), and a Sec-Manage Protocol. However, the security architecture requires an agile and specific protocol to transfer interaction parameters and security messages between its components where OpenFlow considers mainly as network routing protocol. So, The Sec-Manage protocol has been designed specifically for obtaining policy-based interaction parameters among cloud entities between the security controller and its VSFs. This paper focuses on the design and the implementation of the Sec-Manage protocol and demonstrates its use in setting, monitoring, and conveying relevant policy-based interaction security parameters.
Security has become the vital component of today's technology. People wish to safeguard their valuable items in bank lockers. With growing technology most of the banks have replaced the manual lockers by digital lockers. Even though there are numerous biometric approaches, these are not robust. In this work we propose a new approach for personal biometric identification based on features extracted from ECG.
An attacker's success crucially depends on the reconnaissance phase of Distributed Denial of Service (DDoS) attacks, which is the first step to gather intelligence. Although several solutions have been proposed against network reconnaissance attacks, they fail to address the needs of legitimate users' requests. Thus, we propose a cloud-based deception framework which aims to confuse the attacker with reconnaissance replies while allowing legitimate uses. The deception is based on for-warding the reconnaissance packets to a cloud infrastructure through tunneling and SDN so that the returned IP addresses to the attacker will not be genuine. For handling legitimate requests, we create a reflected virtual topology in the cloud to match any changes in the original physical network to the cloud topology using SDN. Through experimentations on GENI platform, we show that our framework can provide reconnaissance responses with negligible delays to the network clients while also reducing the management costs significantly.
The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.
A Robot Operating System (ROS) plays a significant role in organizing industrial robots for manufacturing. With an increasing number of the robots, the operators integrate a ROS with networked communication to share the data. This cyber-physical nature exposes the ROS to cyber attacks. To this end, this paper proposes a cross-layer approach to achieve secure and resilient control of a ROS. In the physical layer, due to the delay caused by the security mechanism, we design a time-delay controller for the ROS agent. In the cyber layer, we define cyber states and use Markov Decision Process to evaluate the tradeoffs between physical and security performance. Due to the uncertainty of the cyber state, we extend the MDP to a Partially Observed Markov Decision Process (POMDP). We propose a threshold solution based on our theoretical results. Finally, we present numerical examples to evaluate the performance of the secure and resilient mechanism.