Biblio
We introduce a new defense mechanism for stochastic control systems with control objectives, to enhance their resilience before the detection of any attacks. To this end, we cautiously design the outputs of the sensors that monitor the state of the system since the attackers need the sensor outputs for their malicious objectives in stochastic control scenarios. Different from the defense mechanisms that seek to detect infiltration or to improve detectability of the attacks, the proposed approach seeks to minimize the damage of possible attacks before they actually have even been detected. We, specifically, consider a controlled Gauss-Markov process, where the controller could have been infiltrated into at any time within the system's operation. Within the framework of game-theoretic hierarchical equilibrium, we provide a semi-definite programming based algorithm to compute the optimal linear secure sensor outputs that enhance the resiliency of control systems prior to attack detection.
The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.
We consider a generic model of Client-Server interactions in the presence of Sender and Relay, conceptual agents acting on behalf of Client and Server, respectively, and modeling cloud service providers in the envisaged "QoS as a Service paradigm". Client generates objects which Sender tags with demanded QoS level, whereas Relay assigns the QoS level to be provided at Server. To verify an object's right to a QoS level, Relay detects its signature that neither Client nor Sender can modify. Since signature detection is costly, Relay tends to occasionally skip it and trust an object; this prompts Sender to occasionally launch a Fake VIP attack, i.e., demand undue QoS level. In a Stackelberg game setting, Relay employs a trust strategy in the form of a double-blind reputation scheme so as to minimize the signature detection cost and undue QoS provision, anticipating a best-response Fake VIP attack strategy on the part of Sender. We ask whether the double-blind reputation scheme, previously proved resilient to a probabilistic Fake VIP attack strategy, is equally resilient to more intelligent Sender behavior. Two intelligent attack strategies are proposed and analyzed using two-dimensional Markov chains.
Quantifying vulnerability and security levels for smart grid diversified link of networks have been a challenging task for a long period of time. Security experts and network administrators used to act based on their proficiencies and practices to mitigate network attacks rather than objective metrics and models. This paper uses the Markov Chain Model [1] to evaluate quantitatively the vulnerabilities associated to the 802.11 Wi-Fi network in a smart grid. Administrator can now assess the level of severity of potential attacks based on determining the probability density of the successive states and thus, providing the corresponding security measures. This model is based on the observed vulnerabilities provided by the Common Vulnerabilities and Exposures (CVE) database explored by MITRE [2] to calculate the Markov processes (states) transitions probabilities and thus, deducing the vulnerability level of the entire attack paths in an attack graph. Cumulative probabilities referring to high vulnerability level in a specific attack path will lead the system administrator to apply appropriate security measures a priori to potential attacks occurrence.
The prevalence of mobile devices and location-based services (LBS) has generated great concerns regarding the LBS users' privacy, which can be compromised by statistical analysis of their movement patterns. A number of algorithms have been proposed to protect the privacy of users in such systems, but the fundamental underpinnings of such remain unexplored. Recently, the concept of perfect location privacy was introduced and its achievability was studied for anonymization-based LBS systems, where user identifiers are permuted at regular intervals to prevent identification based on statistical analysis of long time sequences. In this paper, we significantly extend that investigation by incorporating the other major tool commonly employed to obtain location privacy: obfuscation, where user locations are purposely obscured to protect their privacy. Since anonymization and obfuscation reduce user utility in LBS systems, we investigate how location privacy varies with the degree to which each of these two methods is employed. We provide: (1) achievability results for the case where the location of each user is governed by an i.i.d. process; (2) converse results for the i.i.d. case as well as the more general Markov Chain model. We show that, as the number of users in the network grows, the obfuscation-anonymization plane can be divided into two regions: in the first region, all users have perfect location privacy; and, in the second region, no user has location privacy.
As a vital component of variety cyber attacks, malicious domain detection becomes a hot topic for cyber security. Several recent techniques are proposed to identify malicious domains through analysis of DNS data because much of global information in DNS data which cannot be affected by the attackers. The attackers always recycle resources, so they frequently change the domain - IP resolutions and create new domains to avoid detection. Therefore, multiple malicious domains are hosted by the same IPs and multiple IPs also host same malicious domains in simultaneously, which create intrinsic association among them. Hence, using the labeled domains which can be traced back from queries history of all domains to verify and figure out the association of them all. Graphs seem the best candidate to represent for this relationship and there are many algorithms developed on graph with high performance. A graph-based interface can be developed and transformed to the graph mining task of inferring graph node's reputation scores using improvements of the belief propagation algorithm. Then higher reputation scores the nodes reveal, the more malicious probabilities they infer. For demonstration, this paper proposes a malicious domain detection technique and evaluates on a real-world dataset. The dataset is collected from DNS data servers which will be used for building a DNS graph. The proposed technique achieves high performance in accuracy rates over 98.3%, precision and recall rates as: 99.1%, 98.6%. Especially, with a small set of labeled domains (legitimate and malicious domains), the technique can discover a large set of potential malicious domains. The results indicate that the method is strongly effective in detecting malicious domains.
Due to the unavailability of signatures for previously unknown malware, non-signature malware detection schemes typically rely on analyzing program behavior. Prior behavior based non-signature malware detection schemes are either easily evadable by obfuscation or are very inefficient in terms of storage space and detection time. In this paper, we propose GZero, a graph theoretic approach fast and accurate non-signature malware detection at end hosts. GZero it is effective while being efficient in terms of both storage space and detection time. We conducted experiments on a large set of both benign software and malware. Our results show that GZero achieves more than 99% detection rate and a false positive rate of less than 1%, with less than 1 second of average scan time per program and is relatively robust to obfuscation attacks. Due to its low overheads, GZero can complement existing malware detection solutions at end hosts.
As one of the next generation network architectures, Named Data Networking(NDN) which features location-independent addressing and content caching makes it more suitable to be deployed into Vehicular Ad-hoc Network(VANET). However, a new attack pattern is found when NDN and VANET combine. This new attack is Interest Packet Popple Broadcast Diffusion Attack (PBDA). There is no mitigation strategies to mitigate PBDA. In this paper a mitigation strategies called RVMS based on node reputation value (RV) is proposed to detect malicious nodes. The node calculates the neighbor node RV by direct and indirect RV evaluation and uses Markov chain predict the current RV state of the neighbor node according to its historical RV. The RV state is used to decide whether to discard the interest packet. Finally, the effectiveness of the RVMS is verified through modeling and experiment. The experimental results show that the RVMS can mitigate PBDA.
To improve the security of user-chosen Android screen lock patterns, we propose a novel system-guided pattern lock scheme called "SysPal" that mandates the use of a small number of randomly selected points while selecting a pattern. Users are given the freedom to use those mandated points at any position. We conducted a large-scale online study with 1,717 participants to evaluate the security and usability of three SysPal policies, varying the number of mandatory points that must be used (upon selecting a pattern) from one to three. Our results suggest that the two SysPal policies that mandate the use of one and two points can help users select significantly more secure patterns compared to the current Android policy: 22.58% and 23.19% fewer patterns were cracked. Those two SysPal policies, however, did not show any statistically significant inferiority in pattern recall success rate (the percentage of participants who correctly recalled their pattern after 24 hours). In our lab study, we asked participants to install our screen unlock application on their own Android device, and observed their real-life phone unlock behaviors for a day. Again, our lab study did not show any statistically significant difference in memorability for those two SysPal policies compared to the current Android policy.
Attack graph technique is a common tool for the evaluation of network security. However, attack graphs are generally too large and complex to be understood and interpreted by security administrators. This paper proposes an analysis framework for security attack graphs for a given IT infrastructure system. First, in order to facilitate the discovery of interconnectivities among vulnerabilities in a network, multi-host multi-stage vulnerability analysis (MulVAL) is employed to generate an attack graph for a given network topology. Then a novel algorithm is applied to refine the attack graph and generate a simplified graph called a transition graph. Next, a Markov model is used to project the future security posture of the system. Finally, the framework is evaluated by applying it on a typical IT network scenario with specific services, network configurations, and vulnerabilities.
The extensive use of information and communication technologies in power grid systems make them vulnerable to cyber-attacks. One class of cyber-attack is advanced persistent threats where highly skilled attackers can steal user authentication information's and then move laterally in the network, from host to host in a hidden manner, until they reach an attractive target. Once the presence of the attacker has been detected in the network, appropriate actions should be taken quickly to prevent the attacker going deeper. This paper presents a game theoretic approach to optimize the defense against an invader attempting to use a set of known vulnerabilities to reach critical nodes in the network. First, the network is modeled as a vulnerability multi-graph where the nodes represent physical hosts and edges the vulnerabilities that the attacker can exploit to move laterally from one host to another. Secondly, a two-player zero-sum Markov game is built where the states of the game represent the nodes of the vulnerability multi-graph graph and transitions correspond to the edge vulnerabilities that the attacker can exploit. The solution of the game gives the optimal strategy to disconnect vulnerable services and thus slow down the attack.
Enhancing the security and resilience of interdependent infrastructures is crucial. In this paper, we establish a theoretical framework based on Markov decision processes (MDPs) to design optimal resiliency mechanisms for interdependent infrastructures. We use MDPs to capture the dynamics of the failure of constituent components of an infrastructure and their cyber-physical dependencies. Factored MDPs and approximate linear programming are adopted for an exponentially growing dimension of both state and action spaces. Under our approximation scheme, the optimally distributed policy is equivalent to the centralized one. Finally, case studies in a large-scale interdependent system demonstrate the effectiveness of the control strategy to enhance the network resilience to cascading failures.
One of the key objectives of distributed denial of service (DDoS) attack on the smart grid advanced metering infrastructure is to threaten the availability of end user's metering data. This will surely disrupt the smooth operations of the grid and third party operators who need this data for billing and other grid control purposes. In previous work, we proposed a cloud-based Openflow firewall for mitigation against DDoS attack in a smart grid AMI. In this paper, PRISM model checker is used to perform a probabilistic best-and worst-case analysis of the firewall with regard to DDoS attack success under different firewall detection probabilities ranging from zero to 1. The results from this quantitative analysis can be useful in determining the extent the DDoS attack can undermine the correctness and performance of the firewall. In addition, the study can also be helpful in knowing the extent the firewall can be improved by applying the knowledge derived from the worst-case performance of the firewall.
In recent years, the usage of unmanned aircraft systems (UAS) for security-related purposes has increased, ranging from military applications to different areas of civil protection. The deployment of UAS can support security forces in achieving an enhanced situational awareness. However, in order to provide useful input to a situational picture, sensor data provided by UAS has to be integrated with information about the area and objects of interest from other sources. The aim of this study is to design a high-level data fusion component combining probabilistic information processing with logical and probabilistic reasoning, to support human operators in their situational awareness and improving their capabilities for making efficient and effective decisions. To this end, a fusion component based on the ISR (Intelligence, Surveillance and Reconnaissance) Analytics Architecture (ISR-AA) [1] is presented, incorporating an object-oriented world model (OOWM) for information integration, an expressive knowledge model and a reasoning component for detection of critical events. Approaches for translating the information contained in the OOWM into either an ontology for logical reasoning or a Markov logic network for probabilistic reasoning are presented.
Fast-changing topologies and uncoordinated transmissions are two critical challenges of implementing data security in vehicular ad-hoc networks (VANETs). We propose a new protocol, where transmitters adaptively switch between backing off retransmissions and changing keys to improve success rate. A new 3-dimensional (3-D) Markov model, which can analyze the proposed protocol with symmetric or asymmetric keys in terms of data security and connectivity, is developed. Analytical results, validated by simulations, show that the proposed protocol achieves substantially improved resistance against collusion attacks.
Crowd management in urban settings has mostly relied on either classical, non-automated mechanisms or spontaneous notifications/alerts through social networks. Such management techniques are heavily marred by lack of comprehensive control, especially in terms of averting risks in a manner that ensures crowd safety and enables prompt emergency response. In this paper, we propose a Markov Decision Process Scheme MDP to realize a smart infrastructure that is directly aimed at crowd management. A key emphasis of the scheme is a robust and reliable scalability that provides sufficient flexibility to manage a mixed crowd (i.e., pedestrian, cyclers, manned vehicles and unmanned vehicles). The infrastructure also spans various population settings (e.g., roads, buildings, game arenas, etc.). To realize a reliable and scalable crowd management scheme, the classical MDP is decomposed into Local MDPs with smaller action-state spaces. Preliminarily results show that the MDP decomposition can reduce the system global cost and facilitate fast convergence to local near-optimal solution for each L-MDP.
Aiming at the problem of internal attackers of database system, anomaly detection method of user behaviour is used to detect the internal attackers of database system. With using Discrete-time Markov Chains (DTMC), an anomaly detection system of user behavior is proposed, which can detect the internal threats of database system. First, we make an analysis on SQL queries, which are user behavior features. Then, we use DTMC model extract behavior features of a normal user and the detected user and make a comparison between them. If the deviation of features is beyond threshold, the detected user behavior is judged as an anomaly behavior. The experiments are used to test the feasibility of the detction system. The experimental results show that this detction system can detect normal and abnormal user behavior precisely and effectively.
Nowadays, cyber attacks affect many institutions and individuals, and they result in a serious financial loss for them. Phishing Attack is one of the most common types of cyber attacks which is aimed at exploiting people's weaknesses to obtain confidential information about them. This type of cyber attack threats almost all internet users and institutions. To reduce the financial loss caused by this type of attacks, there is a need for awareness of the users as well as applications with the ability to detect them. In the last quarter of 2016, Turkey appears to be second behind China with an impact rate of approximately 43% in the Phishing Attack Analysis report between 45 countries. In this study, firstly, the characteristics of this type of attack are explained, and then a machine learning based system is proposed to detect them. In the proposed system, some features were extracted by using Natural Language Processing (NLP) techniques. The system was implemented by examining URLs used in Phishing Attacks before opening them with using some extracted features. Many tests have been applied to the created system, and it is seen that the best algorithm among the tested ones is the Random Forest algorithm with a success rate of 89.9%.
We are witnessing a huge growth of cyber-physical systems, which are autonomous, mobile, endowed with sensing, controlled by software, and often wirelessly connected and Internet-enabled. They include factory automation systems, robotic assistants, self-driving cars, and wearable and implantable devices. Since they are increasingly often used in safety- or business-critical contexts, to mention invasive treatment or biometric authentication, there is an urgent need for modelling and verification technologies to support the design process, and hence improve the reliability and reduce production costs. This paper gives an overview of quantitative verification and synthesis techniques developed for cyber-physical systems, summarising recent achievements and future challenges in this important field.
Computer systems face the threat of deliberate security intrusions due to malicious attacks that exploit security holes or vulnerabilities. In practice, these security holes or vulnerabilities still remain in the system and applications even if developers carefully execute system testing. Thus it is necessary and important to develop the mechanism to prevent and/or tolerate security intrusions. As a result, the computer systems are often evaluated with confidentiality, integrity and availability (CIA) criteria from the viewpoint of security, and security is treated as a QoS (Quality of Service) attribute at par with other QoS attributes such as capacity and performance. In this paper, we present the method for quantifying a security attribute called mean time to security failure (MTTSF) of a VM-based intrusion tolerant system based on queueing theory.